$ s. x* _' a6 U
生物泵和温盐环流对海洋化学成分的影响。图中显示了有机物、溶解氧、硝酸盐和无机碳含量的典型垂直剖面。碳循环-C
* t' Z1 G- G0 F) I. H& v5 V ^ 碳支出与碳收入1 C# W" C- x8 y" _- Q
; j, e: b+ u6 H0 c8 Q( I; p, z! }
0 z, @ j& `4 }9 {+ p7 @
海洋生物泵, The marine biological pump ,是指在海洋的生态环境中以生物或生物行为为动力,将碳元素从海洋表面向深层传递的过程
+ j6 w3 i/ \& x* h6 F' _, B 海洋生物泵(来源:百度百库)生物泵(Biological pump):Particulate (颗粒有机质)organic matter (POM) and inorganic particles of biogenic origin sinking from surface water to ocean interior : X! J6 b1 }$ @. v! }4 i9 T6 F
1 ]* ^- x, ~. @- Q% T) f5 [ Particulate Organic Carbon (POC颗粒有机碳):
4 z) O4 ]8 b# _( M+ ?; R 颗粒有机物形成于海水表层透光带中(euphotic zone) . {5 U! @1 j* s4 `8 w, U' W$ D
POC在沉降过程中不断的降解
( E3 v8 |# B. O0 P # C6 K% I m5 Z% B* S1 }& C
硫循环-S
7 D- i3 D8 S' Y) |8 y 陆地和海洋中的硫通过生物分解、火山爆发等进入大气;大气中的硫通过降水和沉降、表面吸收等作用,回到陆地和海洋;地表径流又带着硫进入河流,输往海洋,并沉积于海底。在人类开采和利用含硫的矿物燃料和金属矿石的过程中,硫被氧化成为二氧化硫(SO2)和还原成为硫化氢(H2S)进入大气。硫还随着酸性矿水的排放而进入水体或土壤。 , f; u! O0 R: D( `) w
: a/ a9 W# T% Y# s. a$ b; o! _* q7 ^ 自然界中硫的最大储存库在岩石圈,在沉积岩、变质岩和火成岩三类岩石中总含量达294800×1020克。硫在水圈中的储存量也较大,在海水中含13480×1020克,在极地冰帽、冰山和陆地冰川中含278×1020克,但在地下水、地面水、土壤圈、大气圈中含量均较小。通过有机物分解释放H2S气体或可溶硫酸盐、火山喷发(H2S、SO42-、SO2)等过程使硫变成可移动的简单化合物进入大气、水或土壤中。 4 o$ z/ A, @' p
土壤中微生物可将含硫有机物质分解为硫化氢,硫黄细菌和硫化细菌可将硫化氢进一步转变为元素硫或硫酸盐,许多兼性或嫌气性微生物又可将硫酸盐转化为硫化氢。因此,在土壤和水体底质中,硫因氧化还原电位不同而呈现不同的化学价态。土壤和空气中硫酸盐、硫化氢和二氧化硫可被植物吸收,每年全球植物吸收硫总量约为15×1018克,然后沿着食物链在生态系统中转移。陆地上可溶价态的硫酸盐通过雨水淋洗,每年由河流携入海洋地硫总量达132×1032克。海水和海洋沉积物中积蓄着最大量对生物有效态硫,总量达16480×1020克。由于有机物燃烧、火山喷发和微生物氨化及反硫化作用等,也有少量硫以H2S、SO2和硫酸盐气溶胶状态存在于大气中。近来由于工业发展,化石燃料的燃烧增加,每年燃烧排入大气的SO2量高达147×106吨,影响了生物圈中硫的循环。 . Z* A- N' ]$ G1 L
磷循环-P
( o! t' Q6 C$ G2 Z 磷循环是指磷元素在生态系统和环境中运动、转化和往复的过程。磷灰石构成了磷的巨大储备库,含磷灰石岩石的风化,将大量磷酸盐转交给了陆地上的生态系统。并且与水循环同时发生的是,大量磷酸盐被淋洗并被带入海洋。在海洋中,它们使近海岸水中的磷含量增加,并供给浮游生物及其消费者的需要。
% R0 l' `# q( ?+ E; U 表层海水磷含量自然界的磷循环的基本过程是:岩石和土壤中的磷酸盐由于风化和淋溶作用进入河流,然后输入海洋并沉积于海底,直到地质活动使它们暴露于水面,再次参加循环。这一循环需若干万年才能完成。
5 g3 z+ F4 ~/ ~
7 a7 @" j! u+ m) n; K! N7 L $ \8 C/ o0 ?1 p. q) x
氮循环-N" F; N; S1 i5 N( n+ W+ @
氮循环是指氮在自然界中的循环转化过程,是生物圈内基本的物质循环之一,如大气中的氮经微生物等作用而进入土壤,为动植物所利用,最终又在微生物的参与下返回大气中,如此反复循环,以至无穷。 . I* g* V2 s% l2 D
表层海水氮含量构成陆地生态系统氮循环的主要环节是:生物体内有机氮的合成、氨化作用、硝化作用、反硝化作用和固氮作用。
+ j4 T2 ?/ |) f! H" N- l 植物吸收土壤中的铵盐和硝酸盐,进而将这些无机氮同化成植物体内的蛋白质等有机氮。动物直接或间接以植物为食物,将植物体内的有机氮同化成动物体内的有机氮,这一过程为生物体内有机氮的合成。动植物的遗体、排出物和残落物中的有机氮化合物被微生物分解后形成氨,这一过程是氨化作用。 [1] 在有氧的条件下,土壤中的氨或铵盐在硝化细菌的作用下最终氧化成硝酸盐,这一过程叫做硝化作用。氨化作用和硝化作用产生的无机氮,都能被植物吸收利用。在氧气不足的条件下,土壤中的硝酸盐被反硝化细菌等多种微生物还原成亚硝酸盐,并且进一步还原成分子态氮,分子态氮则返回到大气中,这一过程被称作反硝化作用。固氮作用(nitrogen fixation) 是分子态氮被还原成氨和其他含氮化合物的过程。自然界氮(N2)的固定有两种方式:一种是非生物固氮,即通过闪电、高温放电等固氮,这样形成的氮化物很少;二是生物固氮,即分子态氮在生物体内还原为氨的过程。大气中90%以上的分子态氮都是通过固氮微生物的作用被还原为氨的。由此可见,由于微生物的活动,土壤已成为氮循环中最活跃的区域。 6 a, J$ s: A. ]3 u7 K' ?
- ~$ V! P- _9 Q$ ~/ d1 Y( C 3 c! i# c# R0 f7 X9 m
关于氧化还原反应6 l8 \" ]" a# z8 ]8 |& [
沉积物的氧化还原分带
3 w1 m; E+ l: t( Y% x2 @
" v9 A8 F# `3 U# Q s% r" o( \2 Q1 i7 T: S/ v
% x) _) r& U' x% M& [8 f
|