|
bit:位byte:字节1 byte= 8 bit int 类型为 4 byte,共32位bit,unsigned int也是2^32 byte = 4G 1G= 2^30 =10.7亿 海量数据处理概述:
+ c4 ?+ t1 i) I9 U. A. _- ? 所谓海量数据处理,就是指数据量太大,无法在较短时间内迅速解决,或者无法一次性装入内存。而解决方案就是:针对时间,可以采用巧妙的算法搭配合适的数据结构,如 Bloom filter/Hashmap/bit-map/堆/数据库/倒排索引/trie树;针对空间,大而化小,分而治之(hash映射),把规模大化为规模小的,各个击破。所以,海量数据处理的基本方法总结起来分为以下几种: 分而治之/hash映射 + hash统计 + 堆/快速/归并排序;Trie树/Bloom filter/Bitmap数据库/倒排索引;双层桶划分;外排序;分布式处理之Hadoop/Mapreduce。一、分而治之/hash映射 + hashmap统计 + 快速/归并/堆排序
. c% F& v0 G* R T( @9 m 这种方法是典型的“分而治之”的策略,是解决空间限制最常用的方法,即海量数据不能一次性读入内存,而我们需要对海量数据进行的计数、排序等操作。基本思路如下图所示:先借助哈希算法,计算每一条数据的 hash 值,按照 hash 值将海量数据分布存储到多个桶中。根据 hash 函数的唯一性,相同的数据一定在同一个桶中。如此,我们再依次处理这些小文件,最后做合并运算即可。
4 h W8 Z3 {! n m1 S 6 z7 l$ o5 O& l
问题1:海量日志数据,统计出某日访问百度次数最多的那个IP ; q: {: f1 f& m3 j$ w N
解决方式:IP地址最多有 2^32 = 4G 种取值情况,所以不能完全加载到内存中进行处理,采用 hash分解+ 分而治之 + 归并 方式: 6 p2 _- `8 A* T* y4 c' y
(1)按照 IP 地址的 Hash(IP)%1024 值,把海量IP日志分别存储到1024个小文件中。这样,每个小文件最多包含4MB个IP地址; ) g/ ^) w4 Z5 `/ h4 ]6 K( B
(2)对于每一个小文件,构建一个IP为key,出现次数为value的Hash map,同时记录当前出现次数最多的那个IP地址 # o4 u# `$ i1 x0 m/ T
(3)然后再在这1024组最大的IP中,找出那个频率最大的IP ; }5 I0 n& e/ B$ e6 q7 R& A- g5 U
问题2:有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。 2 l* K8 v) s7 v% y8 p- ^. a e
解决思想: hash分解+ 分而治之 + 归并 : Q9 T2 Z& J0 |1 b# V9 m
(1)顺序读文件中,对于每个词x,按照 hash(x)/(1024*4) 存到4096个小文件中。这样每个文件大概是250k左右。如果其中的有的文件超过了1M大小,还可以按照hash继续往下分,直到分解得到的小文件的大小都不超过1M。
9 ]! ^; {! m i( _; R) e. d0 ^ (2)对每个小文件,可以采用 trie树/hashmap 统计每个文件中出现的词以及相应的频率,并使用 100个节点的小顶堆取出出现频率最大的100个词,并把100个词及相应的频率存入文件。这样又得到了4096个文件。
8 f5 }0 f7 {& \% e: M (3)下一步就是把这4096个文件进行归并的过程了
; P5 [9 ?" _! ~ j# l 问题3:有a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url? * J3 I4 }0 C$ c5 k G2 N: G5 q
解决方案1:如果内存中想要存入所有的 url,共需要 50亿 * 64= 320G大小空间,所以采用 hash 分解+ 分而治之 + 归并 的方式:
* ^: x) ]8 D0 R5 a$ G* u (1)遍历文件a,对每个 url 根据某种hash规则,求取hash(url)/1024,然后根据所取得的值将 url 分别存储到1024个小文件(a0~a1023)中。这样每个小文件的大约为300M。如果hash结果很集中使得某个文件ai过大,可以在对ai进行二级hash(ai0~ai1024),这样 url 就被hash到 1024 个不同级别的文件中。 5 u- L; X& p+ G1 `. P
(2)分别比较文件,a0 VS b0,…… ,a1023 VS b1023,求每对小文件中相同的url时:把其中一个小文件的 url 存储到 hashmap 中,然后遍历另一个小文件的每个url,看其是否在刚才构建的 hashmap 中,如果是,那么就是共同的url,存到文件中。
, I6 a2 X* w- b- L/ V3 q (3)把1024个文件中的相同 url 合并起来
- Z& f/ l% g& ? 解决方案2:Bloom filter
; `) ^( d/ s* O9 ] 如果允许有一定的错误率,可以使用 Bloom filter,4G内存大概可以表示 340 亿bit,n = 50亿,如果按照出错率0.01算需要的大概是650亿个bit,现在可用的是340亿,相差并不多,这样可能会使出错率上升些,将其中一个文件中的 url 使用 Bloom filter 映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloom filter,如果是,那么该url应该是共同的url(注意会有一定的错误率) # ~3 g9 t& Z8 y- j3 X9 e6 @0 p
问题4:有10个文件,每个文件1G,每个文件的每一行存放的都是用户的 query,每个文件的query都可能重复。要求你按照query的频度排序。
, P5 g' F6 [% ~) @8 M 解决方案1:hash分解+ 分而治之 +归并
+ X1 z/ {% g, _% { (1)顺序读取10个文件 a0~a9,按照 hash(query)%10 的结果将 query 写入到另外10个文件(记为 b0~b9)中,这样新生成的文件每个的大小大约也1G . l8 }: Z k9 t! N
(2)找一台内存2G左右的机器,依次使用 hashmap(query, query_count) 来统计每个 query 出现的次数。利用 快速/堆/归并排序 按照出现次数进行排序。将排序好的query和对应的query_cout输出到文件中。这样得到了10个排好序的文件c0~c9。 3 L4 Z* ]; V: @+ ^
(3)对这10个文件 c0~c9 进行归并排序(内排序与外排序相结合)。每次取 c0~c9 文件的 m 个数据放到内存中,进行 10m 个数据的归并,即使把归并好的数据存到 d结果文件中。如果 ci 对应的m个数据全归并完了,再从 ci 余下的数据中取m个数据重新加载到内存中。直到所有ci文件的所有数据全部归并完成。 + t& u: n3 g8 G: r
解决方案2:Trie树
) f& [$ l e4 @( p( V 如果query的总量是有限的,只是重复的次数比较多而已,可能对于所有的query,一次性就可以加入到内存了。在这种情况下,可以采用 trie树/hashmap 等直接来统计每个query出现的次数,然后按出现次数做快速/堆/归并排序就可以了。 : ]# p; l, r% [
问题5:海量数据分布在100台电脑中,请高效统计出这批数据的TOP10 H* [) L4 F- L0 C! f
解决思想: 分而治之 + 归并 " X6 L$ F+ I; h8 b. `* z3 p6 V2 p5 i
(1)在每台电脑上求出TOP10,采用包含10个元素的堆完成(TOP10小,用最大堆,TOP10大,用最小堆) 0 {) V2 w, ^2 ~: [/ o" O# N
(2)求出每台电脑上的TOP10后,把这100台电脑上的 TOP10 合并之后,共1000个数据,在采用堆排序或者快排方式 求出 top10
9 M2 b1 V! w6 a0 R) D (注意:该题的 TOP10 是取最大值或最小值,如果取频率TOP10,就应该先hash分解,将相同的数据移动到同一台电脑中,再使用hashmap分别统计出现的频率) + B9 E' T5 W9 o, G8 e
问题6:在 2.5 亿个整数中找出不重复的整数,内存不足以容纳这2.5亿个整数
+ E6 }7 r! l7 _: C* b c, q9 I* ?8 h: m 解决方案1:hash 分解+ 分而治之 + 归并
6 u5 {0 ^6 ~! }; `3 F; ? (1)2.5亿个 int 类型 hash 到1024个小文件中 a0~a1023,如果某个小文件大小还大于内存,进行多级hash
j9 d2 g6 ?0 f5 }: q( e1 s+ S (2)将每个小文件读进内存,找出只出现一次的数据,输出到b0~b1023
3 x. D+ ^. L2 p- ~" b, s. w (3)最后数据合并即可 5 N1 y* v* ~& o8 V: W- i; a" \
解决方案2 : 2-Bitmap & W ?! Y3 D3 Z( u) n5 z4 B8 X- c
如果内存够1GB的话,采用 2-Bitmap 进行统计,共需内存 2^32 * 2bit = 1GB内存。2-bitmap 中,每个数分配 2bit(00表示不存在,01表示出现一次,10表示多次,11无意义),然后扫描这 2.5 亿个整数,查看Bitmap中相对应位,如果是00,则将其置为01;如果是01,将其置为10;如果是10,则保持不变。所描完成后,查看bitmap,把对应位是01的整数输出即可。(如果是找出重复的数据,可以用1-bitmap。第一次bit位由0变1,第二次查询到相应bit位为1说明是重复数据,输出即可) X9 [; v$ @! X# O; A3 v
二、Trie树+红黑树+hashmap 9 u, T- m$ y4 z5 s
Trie树、红黑树 和 hashmap 可以认为是第一部分中分而治之算法的具体实现方法之一。 3 v! q5 u% n' \! o+ u7 X
其中,Trie树适合处理海量字符串数据,尤其是大量的字符串数据中存在前缀时。Trie树在字典的存储,字符串的查找,求取海量字符串的公共前缀,以及字符串统计等方面发挥着重要的作用。
- c; X6 ? _3 x. r$ {; ^% g' w 用于存储时,Trie树因为不重复存储公共前缀,节省了大量的存储空间; 9 ?1 \$ B9 {$ X# N8 Z
用于以字符串的查找时,Trie树依靠其特殊的性质,实现了在任意数据量的字符串集合中都能以O(len)的时间复杂度完成查找(len为要检索的字符串长度);
( h( r; q7 L" u; C* J1 ?8 s 在字符串统计中,Trie树能够快速记录每个字符串出现的次数
5 w: Z% N/ Q- F* h8 o+ y+ z 问题1:上千万或上亿数据(有重复),统计其中出现次数最多的前N个数据。 * |$ i B# m* M7 ?
解决方案: hashmap/红黑树 + 堆排序 5 Y; y; d0 r" [8 S
(1)如果是上千万或上亿的 int 数据,现在的机器4G内存能存下。所以考虑采用 hashmap/搜索二叉树/红黑树 等来进行统计重复次数 % k* f |! a2 M" V9 `
(2)然后使用包含 N 个元素的小顶堆找出频率最大的N个数据
+ T& w! n6 ^- \; C! ]! [9 k 问题2:一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前10个词,并给出时间复杂度 1 ? o6 S# m( I0 m b" H: d9 X8 z
解决思路: trie树 + 堆排序 9 h/ E; b: N' Z1 \% i
用 trie树 统计每个词出现的次数,时间复杂度是O(n*len)(len表示单词的平均长度)。
/ p* x5 \0 e- ` 然后使用小顶堆找出出现最频繁的前10个词,时间复杂度是O(n*lg10)。
7 J+ \, N7 n$ Q 总的时间复杂度,是O(n*le)与O(n*lg10)中较大的那一个。
5 k1 F' \- y9 r; W8 |2 P. j 问题3:有一千万个字符串记录(这些字符串的重复率比较高,虽然总数是1千万,但是如果去除重复和,不超过3百万个),每个查询串的长度为1-255字节。请你统计最热门的10个查询串(重复度越高,说明越热门),要求使用的内存不能超过1G。 3 t; k$ |3 N* a1 Q8 s, \
解决方案:
5 R [- S7 F7 I6 s/ m 内存不能超过 1G,每条记录是 255byte,1000W 条记录需要要占据2.375G内存,这个条件就不满足要求了,但是去重后只有 300W 条记录,最多占用0.75G内存,因此可以将它们都存进内存中去。使用 trie树(或者使用hashmap),关键字域存该查询串出现的次数。最后用10个元素的最小堆来对出现频率进行排序。总的时间复杂度,是O(n*le)与O(n*lg10)中较大的那一个。
8 `1 t: N" Q' {! B5 ^/ @1 D! U 问题4:1000万字符串,其中有些是重复的,需要把重复的全部去掉,保留没有重复的字符串。
7 N; N K7 r& e 解决方案:trie树 5 n1 ]5 V O' a% o0 m
三、BitMap 与 Bloom Filter: & N6 ]/ t( E' K1 T( U. Q
1、BitMap 就是通过 bit 位为 1 或 0 来标识某个状态存不存在。可用于数据的快速查找,判重,删除,一般来说适合的处理数据范围小于 8bit *2^32。否则内存超过4G,内存资源消耗有点多。
% Z5 _/ h/ Q, Z% F. O, m! B 2、Bloom Filter 主要是用于判定目标数据是否存在于一个海量数据集 以及 集合求交集。以存在性判定为例,Bloom Filter 通过对目标数据的映射,能够以 O(k) 的时间复杂度判定目标数据的存在性,其中k为使用的hash函数个数。这样就能大大缩减遍历查找所需的时间。 ! y K: v% k+ m; K d5 g. O. N
问题1:已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。 & n: {; J2 x+ J. t) o
解决思路: 0 z2 M8 d4 ~6 Z" G9 Q: L
8位最多99 999 999,需要 100M个bit 位,不到12M的内存空间。我们把 0-99 999 999的每个数字映射到一个Bit位上,这样,就用了小小的12M左右的内存表示了所有的8位数的电话
9 h, P. {0 }* m; a W+ l 问题2:2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。 3 r/ b3 |5 r! ]- @8 z: z+ ^
解决方案:使用 2-bitmap,详情见上文 % D) T. J$ B7 e. b. H/ O
问题3:给40亿个不重复的 unsigned int 的整数,没排过序的,然后再给一个数,如何快速判断这个数是否在那40亿个数当中 % s! ~+ T9 s9 q$ g0 C
解决方案:使用 Bitmap,申请 512M 的内存,一个bit位代表一个 unsigned int 值。读入40亿个数,设置相应的bit位,读入要查询的数,查看相应bit位是否为1,为1表示存在,为0表示不存在。 9 i7 K0 O: P9 q3 y/ C3 T% j1 }
问题4:现有两个各有20亿行的文件,每一行都只有一个数字,求这两个文件的交集。
( S9 O- h6 H, g6 j 解决方案:采用 bitmap 进行问题解决,因为 int 的最大数是 2^32 = 4G,用一个二进制的下标来表示一个 int 值,大概需要4G个bit位,即约4G/8 = 512M的内存,就可以解决问题了。
, l1 v0 G. h! x ① 首先遍历文件,将每个文件按照数字的正数,负数标记到2个 bitmap 上,为:正数 bitmapA_positive,负数 bitmapA_negative
3 W3 Z6 p3 j$ J ② 遍历另为一个文件,生成正数:bitmapB_positive,bitmapB_negative
) a1 b" m6 K4 A3 | ③ 取 bitmapA_positive and bitmapB_positive 得到2个文件的正数的交集,同理得到负数的交集。
6 M! c; t4 k, s- c9 P z X5 s ④ 合并,问题解决 " O- w5 z, @8 h* Q
这里一次只能解决全正数,或全负数,所以要分两次 / B, A+ R) k- u r
问题5:与上面的问题4类似,只不过现在不是A和B两个大文件,而是A, B, C, D….多个大文件,求集合的交集 . z- x- q3 B% f8 m1 c6 O
解决方案:
3 Q& c- W! }9 V, Z4 h (1)依次遍历每个大文件中的每条数据,遍历每条数据时,都将它插入 Bloom Filter;
2 O) v, w) _) U9 E5 g, ` (2)如果已经存在,则在另外的集合(记为S)中记录下来; # ]$ H3 `5 m6 y' z5 Z8 r, b# v. N
(3)如果不存在,则插入Bloom Filter; / m! O- n- |4 f. s/ W6 u1 |+ b, D- Y
(4)最后,得到的S即为所有这些大文件中元素的交集
$ z+ D$ v, T! M# W( `% s3 z 四、多层划分: . n4 \8 a& t& y
多层划分本质上还是分而治之的思想,重在“分”的技巧上!因为元素范围很大,需要通过多次划分,逐步确定范围,然后最后在一个可以接受的范围内进行。适用用于:第k大,中位数,不重复或重复的数字 L1 j6 ?; ]5 ^* D* H5 @
问题1:求取海量整数的中位数
. K6 c: R; c- e5 T 解决方案:
# n: a) S3 Q G+ x4 \6 Z5 `+ l! u- ~ 依次遍历整数,按照其大小将他们分拣到n个桶中。如果有的桶数据量很小,有的则数据量很大,大到内存放不下了;对于那些太大的桶,再分割成更小的桶; 5 K- B( T$ M2 a P I2 j
之后根据桶数量的统计结果就可以判断中位数落到哪个桶中,如果该桶中还有子桶,就判断在其哪个子桶中,直到最后找出目标。 5 S a/ G! E4 C" M
问题2:一共有N个机器,每个机器上有N个数,每个机器最多存 N 个数,如何找到 N^2 个数中的中数?
/ O! }9 ^' B4 Q! F7 L t4 E 解决方案1: hash分解 + 排序
$ k B$ P) o) D5 N& G7 `! q 按照升序顺序把这些数字,hash划分为N个范围段。假设数据范围是2^32 的unsigned int 类型。理论上第一台机器应该存的范围为0~(2^32)/N,第i台机器存的范围是(2^32)*(i-1)/N~(2^32)*i/N。hash过程可以扫描每个机器上的N个数,把属于第一个区段的数放到第一个机器上,属于第二个区段的数放到第二个机器上,…,属于第N个区段的数放到第N个机器上。注意这个过程每个机器上存储的数应该是O(N)的。
+ X2 X8 j8 I P1 R/ ^3 d q) y: S 然后我们依次统计每个机器上数的个数,依次累加,直到找到第k个机器,在该机器上累加的数大于或等于(N^2)/2,而在第k-1个机器上的累加数小于(N^2)/2,并把这个数记为x。那么我们要找的中位数在第k个机器中,排在第(N^2)/2-x位。然后我们对第k个机器的数排序,并找出第(N^2)/2-x个数,即为所求的中位数的复杂度是O(N^2)的。
0 N; F$ p) ^' P* \/ W 解决方案2: 分而治之 + 归并 5 Z0 K9 e0 ]. K" A: o0 e ?/ S
先对每台机器上的数进行排序。排好序后,我们采用归并排序的思想,将这N个机器上的数归并起来得到最终的排序。找到第(N^2)/2个便是所求。复杂度是O(N^2 * lgN^2)的
- ?8 o$ \* L* e2 B1 b, w2 l* y ?8 U( ^% N
$ f. o+ v5 r+ D/ D; {9 f2 e3 f/ P1 d8 q+ G
0 g; B2 b! a8 |0 v
|