收藏本站 劰载中...网站公告 | 吾爱海洋论坛交流QQ群:835383472

[数据处理] 从nc文件中提取风速数据并且进行时间序列分析

[复制链接]
                                   本文目的
  • 介绍了如何从nc文件中,提取风速数据;
  • 介绍如何将风速数据转换成时间序列;
  • 简单的时间序列的趋势拆解(首发)。' v# t6 N7 J5 M- U

    * k4 ~0 e; K' m! V
代码链接

代码我已经放在Github上面了,免费分享使用,https://github.com/yuanzhoulvpi2 ... ree/main/python_GIS


* v& h: N  E6 W2 {0 p4 P/ z

过程介绍
- `2 F2 m+ A* }, s9 K. k

( Z/ k4 c& ^4 u. z5 \$ n1 n* {
# Y! S( B5 r4 x2 M
1. 导入包
1 Q9 f! a1 y9 i3 B/ [3 I3 e; n9 k$ k$ x2 L. ]
[Python] 纯文本查看 复制代码
# 基础的数据处理工具
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt # 可视化
import datetime # 处理python时间函数
import netCDF4 as nc  # 处理nc数据
from netCDF4 import num2date  # 处理nc数据
import geopandas as gpd  # 处理网格数据,shp之类的
import rasterio  # 处理tiff文件
from shapely.geometry import Point  # gis的一些逻辑判断
from cartopy import crs as ccrs  # 设置投影坐标系等
from tqdm import tqdm  # 打印进度条
from joblib import Parallel, delayed  # 并行
import platform  # 检测系统

tqdm.pandas()

# matplotlib 显示中文的问题
if platform.system() == 'Darwin':
    plt.rcParams["font.family"] = 'Arial Unicode MS'
elif platform.system() == 'Windows':
    plt.rcParams["font.family"] = 'SimHei'
else:
    pass
( B0 M: h( g9 D: o% J2 }8 s
# |7 C2 E9 l5 L5 |
; X* \0 h, i8 T3 k
2.导入数据 处理数据  e" p: D( _2 X! B
) ~) T2 C! n' p5 c7 G6 i4 i

' G+ J& n0 M5 g" c' C
[Python] 纯文本查看 复制代码
# 导入数据
nc_data = nc.Dataset("./数据集/GIS实践3/2016_2020.nc")

# 处理数据
raw_latitude = np.array(nc_data.variables['latitude'])
raw_longitude = np.array(nc_data.variables['longitude'])
raw_time = np.array(nc_data.variables['time'])
raw_u10 = np.array(nc_data.variables['u10'])
raw_v10 = np.array(nc_data.variables['v10'])
# 提取缺失值,并且将缺失值替换
missing_u10_value = nc_data.variables['u10'].missing_value
missing_v10_value = nc_data.variables['v10'].missing_value
raw_v10[raw_v10 == missing_v10_value] = np.nan
raw_u10[raw_u10 == missing_u10_value] = np.nan


# 处理时间
def cftime2datetime(cftime, units, format='%Y-%m-%d %H:%M:%S'):
    """
    将nc文件里面的时间格式 从cftime 转换到 datetime格式
    :param cftime:
    :param units:
    :param format:
    :return:
    """
    return datetime.datetime.strptime(num2date(times=cftime, units=units).strftime(format), format)

clean_time_data = pd.Series([cftime2datetime(i, units=str(nc_data.variables['time'].units)) for i in tqdm(raw_time)])
clean_time_data[:4]
( _" o; C) v4 S

6 Y0 Q3 g1 X( m6 L; A8 b! Q. @; G3. 计算风速数据& x! i+ w$ ], m0 f  ?* S4 n
. n, M) i- M0 J6 l

2 a+ s$ y! }+ }# _0 `' A
[Python] 纯文本查看 复制代码
windspeed_mean = pd.Series([np.sqrt(raw_v10[i,:, :] ** 2 + raw_u10[i, :, :]**2).mean() for i in tqdm(range(clean_time_data.shape[0]))])

time_windspeed = pd.DataFrame({'time':clean_time_data,'mean_ws':windspeed_mean})
time_windspeed

6 j4 e- O; Z+ V8 h# K+ g
6b7fd110a68e6d3fd40460ccdd7a810b.png
' u' T; u8 k$ i5 e1 u
5 p9 i- z# ^& A+ [% n7 c% E

& C9 i$ z4 K) `4 S8 g% b4. 年度数据可视化% c7 |* ^+ E% }3 L# L" v* u
# x6 |7 A3 I0 h  P6 r- I# u: G

5 x5 l5 s0 B" ?! T* J
[Python] 纯文本查看 复制代码
year_data = time_windspeed.groupby(time_windspeed.time.dt.year).agg(
    mean_ws = ('mean_ws', 'mean')
).reset_index()

# year_data

with plt.style.context('fivethirtyeight') as style:

    fig, ax = plt.subplots(figsize=(10,3), dpi=300)
    ax.plot(year_data['time'], year_data['mean_ws'], '-o',linewidth=3, ms=6)
    ax.set_xticks(year_data['time'])
    #
    #
    for i in range(year_data.shape[0]):
        ax.text(year_data.iloc[/size][/font][i][font=新宋体][size=3]['time']+0.1, year_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws'], str(np.around(year_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws'], 2)),
                bbox=dict(boxstyle='round', facecolor='white', alpha=0.5))
    #
    for i in ['top', 'right']:
        ax.spines[/size][/font][i][font=新宋体][size=3].set_visible(False)

    ax.set_title("各年平均风速")
    ax.set_ylabel("$Wind Speed / m.s^{-1}$")

3 n, K; r0 V0 l. W1 P9 M, _1 ?
952d93a401a01cd1fa10be892b8b64d6.png

6 _" R8 r, l+ F
) v, z" _# W' I. p( K6 P
5 {8 D0 B3 j  `! o6 _
5. 月维度数据可视化0 e* E" }+ B4 G" A" ?
[Python] 纯文本查看 复制代码
month_data = time_windspeed.groupby(time_windspeed.time.dt.month).agg(
    mean_ws = ('mean_ws', 'mean')
).reset_index()


with plt.style.context('fivethirtyeight') as style:

    fig, ax = plt.subplots(figsize=(10,3), dpi=300)
    ax.plot(month_data['time'], month_data['mean_ws'], '-o',linewidth=3, ms=6)
    ax.set_xticks(month_data['time'])
    _ = ax.set_xticklabels(labels=[f'{i}月' for i in month_data['time']])


    for i in range(month_data.shape[0]):
        ax.text(month_data.iloc[/size][/font][i][font=新宋体][size=3]['time'], month_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws']+0.05, str(np.around(month_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws'], 2)),
                bbox=dict(boxstyle='round', facecolor='white', alpha=0.5))

    for i in ['top', 'right']:
        ax.spines[/size][/font][i][font=新宋体][size=3].set_visible(False)

    ax.set_title("各月平均风速")
    ax.set_ylabel("$Wind Speed / m.s^{-1}$")
    fig.savefig("month_plot.png")
. f1 @7 @0 ~0 N) O6 y. x! C5 s
a520cff3361647efbb668c89005a5570.png
0 K8 J" j: [! H+ i! \% N% z

& @2 W! l- V6 [& y  P2 V
2 m; p- g" I. n: I1 Y4 k9 Y% c3 f
6.天维度数据可视化8 F! S# |3 X: }* f, y# A* ^
  • 计算天数据
    ' ]* _( @# {+ ?: y+ e6 A

    ; X$ I6 F& @: |  ?
[Python] 纯文本查看 复制代码
day_data = time_windspeed.groupby(time_windspeed.time.apply(lambda x: x.strftime('%Y-%m-%d'))).agg(
    mean_ws = ('mean_ws', 'mean')
).reset_index()

day_data['time'] = pd.to_datetime(day_data['time'])

day_data = day_data.set_index('time')
day_data.head()
  • 可视化
    - j0 R' u6 Q+ ~# S1 k! T

    0 x! @" k) @6 ?) o
[Python] 纯文本查看 复制代码
# day_data.dtypes
fig, ax = plt.subplots(figsize=(20,4), dpi=300)
ax.plot(day_data.index, day_data['mean_ws'], '-o')
# ax.xaxis.set_ticks_position('none')
# ax.tick_params(axis="x", labelbottom=False)
ax.set_title("每天平均风速")
ax.set_ylabel("$Wind Speed / m.s^{-1}$")
ax.set_xlabel("date")
fig.savefig('day_plot.png')
" S: u- D* H- |5 @
) y( Z- I8 o2 b
0 ~& I% B* x, ^6 l# S
053571827f212c867e38f40c8aa49ca5.png

" _0 B0 V8 J( r9 `1.天维度数据做趋势拆解# `" E" p; d) n2 w
2 a5 o* n4 T9 x' k8 w, j
[Python] 纯文本查看 复制代码
# 导入包
from statsmodels.tsa.seasonal import seasonal_decompose
from dateutil.parser import parse
# 乘法模型
result_mul = seasonal_decompose(day_data['mean_ws'], model="multilicative", extrapolate_trend='freq')
result_add = seasonal_decompose(day_data['mean_ws'], model="additive", extrapolate_trend='freq')
font = {'family': 'serif',
        'color': 'darkred',
        'weight': 'normal',
        'size': 16,
        }
# 画图

with plt.style.context('classic'):
    fig, ax = plt.subplots(ncols=2, nrows=4, figsize=(22, 15), sharex=True, dpi=300)


    def plot_decompose(result, ax, index, title, fontdict=font):
        ax[0, index].set_title(title, fontdict=fontdict)
        result.observed.plot(ax=ax[0, index])
        ax[0, index].set_ylabel("Observed")

        result.trend.plot(ax=ax[1, index])
        ax[1, index].set_ylabel("Trend")

        result.seasonal.plot(ax=ax[2, index])
        ax[2, index].set_ylabel("Seasonal")

        result.resid.plot(ax=ax[3, index])
        ax[3, index].set_ylabel("Resid")


    plot_decompose(result=result_add, ax=ax, index=0, title="Additive Decompose", fontdict=font)
    plot_decompose(result=result_mul, ax=ax, index=1, title="Multiplicative Decompose", fontdict=font)
    fig.savefig('decompose.png')

) Z6 {2 |1 j1 H
cd8468c3910ecbcfac542ed3328df432.jpeg                
  v' P7 S0 U0 p% F

: t8 t* V9 j6 v6 Y
! [0 a3 Z  y, \' X! s' A0 n  n: u5 F% V8 Q1 ^* i
- w) ^6 c, {+ Z1 b, f* }
回复

举报 使用道具

相关帖子

全部回帖
暂无回帖,快来参与回复吧
懒得打字?点击右侧快捷回复 【吾爱海洋论坛发文有奖】
您需要登录后才可以回帖 登录 | 立即注册
尖叫的土豆
活跃在昨天 00:28
快速回复 返回顶部 返回列表