本文目的- 介绍了如何从nc文件中,提取风速数据;
- 介绍如何将风速数据转换成时间序列;
- 简单的时间序列的趋势拆解(首发)。' v# t6 N7 J5 M- U
* k4 ~0 e; K' m! V 代码链接代码我已经放在Github上面了,免费分享使用,https://github.com/yuanzhoulvpi2 ... ree/main/python_GIS。
* v& h: N E6 W2 {0 p4 P/ z
过程介绍 - `2 F2 m+ A* }, s9 K. k
( Z/ k4 c& ^4 u. z5 \$ n1 n* { # Y! S( B5 r4 x2 M
1. 导入包
1 Q9 f! a1 y9 i3 B/ [3 I3 e; n9 k$ k$ x2 L. ]
[Python] 纯文本查看 复制代码 # 基础的数据处理工具
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt # 可视化
import datetime # 处理python时间函数
import netCDF4 as nc # 处理nc数据
from netCDF4 import num2date # 处理nc数据
import geopandas as gpd # 处理网格数据,shp之类的
import rasterio # 处理tiff文件
from shapely.geometry import Point # gis的一些逻辑判断
from cartopy import crs as ccrs # 设置投影坐标系等
from tqdm import tqdm # 打印进度条
from joblib import Parallel, delayed # 并行
import platform # 检测系统
tqdm.pandas()
# matplotlib 显示中文的问题
if platform.system() == 'Darwin':
plt.rcParams["font.family"] = 'Arial Unicode MS'
elif platform.system() == 'Windows':
plt.rcParams["font.family"] = 'SimHei'
else:
pass ( B0 M: h( g9 D: o% J2 }8 s
# |7 C2 E9 l5 L5 |
; X* \0 h, i8 T3 k
2.导入数据 处理数据 e" p: D( _2 X! B
) ~) T2 C! n' p5 c7 G6 i4 i
' G+ J& n0 M5 g" c' C[Python] 纯文本查看 复制代码 # 导入数据
nc_data = nc.Dataset("./数据集/GIS实践3/2016_2020.nc")
# 处理数据
raw_latitude = np.array(nc_data.variables['latitude'])
raw_longitude = np.array(nc_data.variables['longitude'])
raw_time = np.array(nc_data.variables['time'])
raw_u10 = np.array(nc_data.variables['u10'])
raw_v10 = np.array(nc_data.variables['v10'])
# 提取缺失值,并且将缺失值替换
missing_u10_value = nc_data.variables['u10'].missing_value
missing_v10_value = nc_data.variables['v10'].missing_value
raw_v10[raw_v10 == missing_v10_value] = np.nan
raw_u10[raw_u10 == missing_u10_value] = np.nan
# 处理时间
def cftime2datetime(cftime, units, format='%Y-%m-%d %H:%M:%S'):
"""
将nc文件里面的时间格式 从cftime 转换到 datetime格式
:param cftime:
:param units:
:param format:
:return:
"""
return datetime.datetime.strptime(num2date(times=cftime, units=units).strftime(format), format)
clean_time_data = pd.Series([cftime2datetime(i, units=str(nc_data.variables['time'].units)) for i in tqdm(raw_time)])
clean_time_data[:4] ( _" o; C) v4 S
6 Y0 Q3 g1 X( m6 L; A8 b! Q. @; G3. 计算风速数据& x! i+ w$ ], m0 f ?* S4 n
. n, M) i- M0 J6 l
2 a+ s$ y! }+ }# _0 `' A[Python] 纯文本查看 复制代码 windspeed_mean = pd.Series([np.sqrt(raw_v10[i,:, :] ** 2 + raw_u10[i, :, :]**2).mean() for i in tqdm(range(clean_time_data.shape[0]))])
time_windspeed = pd.DataFrame({'time':clean_time_data,'mean_ws':windspeed_mean})
time_windspeed
6 j4 e- O; Z+ V8 h# K+ g' u' T; u8 k$ i5 e1 u
5 p9 i- z# ^& A+ [% n7 c% E
& C9 i$ z4 K) `4 S8 g% b4. 年度数据可视化% c7 |* ^+ E% }3 L# L" v* u
# x6 |7 A3 I0 h P6 r- I# u: G
5 x5 l5 s0 B" ?! T* J[Python] 纯文本查看 复制代码 year_data = time_windspeed.groupby(time_windspeed.time.dt.year).agg(
mean_ws = ('mean_ws', 'mean')
).reset_index()
# year_data
with plt.style.context('fivethirtyeight') as style:
fig, ax = plt.subplots(figsize=(10,3), dpi=300)
ax.plot(year_data['time'], year_data['mean_ws'], '-o',linewidth=3, ms=6)
ax.set_xticks(year_data['time'])
#
#
for i in range(year_data.shape[0]):
ax.text(year_data.iloc[/size][/font][i][font=新宋体][size=3]['time']+0.1, year_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws'], str(np.around(year_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws'], 2)),
bbox=dict(boxstyle='round', facecolor='white', alpha=0.5))
#
for i in ['top', 'right']:
ax.spines[/size][/font][i][font=新宋体][size=3].set_visible(False)
ax.set_title("各年平均风速")
ax.set_ylabel("$Wind Speed / m.s^{-1}$")
3 n, K; r0 V0 l. W1 P9 M, _1 ?
6 _" R8 r, l+ F
) v, z" _# W' I. p( K6 P5 {8 D0 B3 j `! o6 _
5. 月维度数据可视化0 e* E" }+ B4 G" A" ?
[Python] 纯文本查看 复制代码 month_data = time_windspeed.groupby(time_windspeed.time.dt.month).agg(
mean_ws = ('mean_ws', 'mean')
).reset_index()
with plt.style.context('fivethirtyeight') as style:
fig, ax = plt.subplots(figsize=(10,3), dpi=300)
ax.plot(month_data['time'], month_data['mean_ws'], '-o',linewidth=3, ms=6)
ax.set_xticks(month_data['time'])
_ = ax.set_xticklabels(labels=[f'{i}月' for i in month_data['time']])
for i in range(month_data.shape[0]):
ax.text(month_data.iloc[/size][/font][i][font=新宋体][size=3]['time'], month_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws']+0.05, str(np.around(month_data.iloc[/size][/font][i][font=新宋体][size=3]['mean_ws'], 2)),
bbox=dict(boxstyle='round', facecolor='white', alpha=0.5))
for i in ['top', 'right']:
ax.spines[/size][/font][i][font=新宋体][size=3].set_visible(False)
ax.set_title("各月平均风速")
ax.set_ylabel("$Wind Speed / m.s^{-1}$")
fig.savefig("month_plot.png") . f1 @7 @0 ~0 N) O6 y. x! C5 s
0 K8 J" j: [! H+ i! \% N% z
& @2 W! l- V6 [& y P2 V 2 m; p- g" I. n: I1 Y4 k9 Y% c3 f
6.天维度数据可视化8 F! S# |3 X: }* f, y# A* ^
- 计算天数据
' ]* _( @# {+ ?: y+ e6 A
; X$ I6 F& @: | ?
[Python] 纯文本查看 复制代码 day_data = time_windspeed.groupby(time_windspeed.time.apply(lambda x: x.strftime('%Y-%m-%d'))).agg(
mean_ws = ('mean_ws', 'mean')
).reset_index()
day_data['time'] = pd.to_datetime(day_data['time'])
day_data = day_data.set_index('time')
day_data.head()- 可视化
- j0 R' u6 Q+ ~# S1 k! T
0 x! @" k) @6 ?) o
[Python] 纯文本查看 复制代码 # day_data.dtypes
fig, ax = plt.subplots(figsize=(20,4), dpi=300)
ax.plot(day_data.index, day_data['mean_ws'], '-o')
# ax.xaxis.set_ticks_position('none')
# ax.tick_params(axis="x", labelbottom=False)
ax.set_title("每天平均风速")
ax.set_ylabel("$Wind Speed / m.s^{-1}$")
ax.set_xlabel("date")
fig.savefig('day_plot.png') " S: u- D* H- |5 @
) y( Z- I8 o2 b
0 ~& I% B* x, ^6 l# S
" _0 B0 V8 J( r9 `1.天维度数据做趋势拆解# `" E" p; d) n2 w
2 a5 o* n4 T9 x' k8 w, j
[Python] 纯文本查看 复制代码 # 导入包
from statsmodels.tsa.seasonal import seasonal_decompose
from dateutil.parser import parse
# 乘法模型
result_mul = seasonal_decompose(day_data['mean_ws'], model="multilicative", extrapolate_trend='freq')
result_add = seasonal_decompose(day_data['mean_ws'], model="additive", extrapolate_trend='freq')
font = {'family': 'serif',
'color': 'darkred',
'weight': 'normal',
'size': 16,
}
# 画图
with plt.style.context('classic'):
fig, ax = plt.subplots(ncols=2, nrows=4, figsize=(22, 15), sharex=True, dpi=300)
def plot_decompose(result, ax, index, title, fontdict=font):
ax[0, index].set_title(title, fontdict=fontdict)
result.observed.plot(ax=ax[0, index])
ax[0, index].set_ylabel("Observed")
result.trend.plot(ax=ax[1, index])
ax[1, index].set_ylabel("Trend")
result.seasonal.plot(ax=ax[2, index])
ax[2, index].set_ylabel("Seasonal")
result.resid.plot(ax=ax[3, index])
ax[3, index].set_ylabel("Resid")
plot_decompose(result=result_add, ax=ax, index=0, title="Additive Decompose", fontdict=font)
plot_decompose(result=result_mul, ax=ax, index=1, title="Multiplicative Decompose", fontdict=font)
fig.savefig('decompose.png')
) Z6 {2 |1 j1 H
v' P7 S0 U0 p% F
: t8 t* V9 j6 v6 Y
! [0 a3 Z y, \' X! s' A0 n n: u5 F% V8 Q1 ^* i
- w) ^6 c, {+ Z1 b, f* }
|