海洋渔业正从传统的海洋捕捞向深远海养殖方向发展。据联合国粮农组织(FAO)2020年统计,全球捕捞产量自 21 世纪以来基本稳定,而水产养殖产量逐年攀升,预计在 2030年前后将超过捕捞产量。随着近海自然渔业资源的减少和环境保护压力的增加,未来水产品增量将更加依赖深远海养殖来实现。0 }# d1 \1 `6 F
我国《全国海洋经济发展“十三 五”规划》明确提出全面提升远洋渔业资源开发能力,推动建设深水网箱养殖产业带,大力发展深水网箱养殖,促进海洋渔业产业调整结构、转变渔业经济增长方式。发展深远海养殖需要先进的养殖装备作为支撑。基于养殖网箱实施自动化、智能化养殖,是提升养殖规模和效益、降低人员工作强度和养殖风险的重要手段。对养殖海域环境实施远程实时监测是养殖自动化、智能化的关键环节。
$ E+ \, ~! p n' n面向深远海网箱养殖需求,基于高精度温盐深测量仪、无线数据传输网络、监测信息实时处理与集成等关键技术,研制与深远海大型智能化养殖网箱配套的海洋环境监测系统,能够为深远海养殖提供技术与装备支撑, 推动海洋渔业及相关产业发展。
* G& u" ]* `* e* y$ [1 、研究现状
6 Y y' H5 D8 P- n1 u7 ^9 M: {9 |. G! Y自20世纪60年代以来,深水养殖产业发展迅速,深远海养殖网箱等高端渔业装备蓬勃发展,代表性产品包括世界首座深海半潜式智能网箱 “Ocean Farm 1”(图 1)、目前容量最大的网箱结构养殖工船“HAVFARM 1”(图 2)等。目前, 深水网箱核心技术被挪威、日本、加拿大、俄罗斯等国所垄断。0 L) M/ P8 M& y/ [
我国网箱养殖已有一定规模,但主要分布在内湾和近海,养殖密度高,水体质量差。我国深水网箱等养殖装备起步较晚,核心装备主要依靠进口,本土化配套能力不足,限制了我国养殖 装备的长远发展。. ~0 \( k- N; |) y
1 s' H" K n6 h) K; J$ k* X
- V# W# ]* g: h3 R2 T
图 1 挪威“Ocean Farm 1”深海养殖网箱 0 o9 f4 z; o3 }. a. j
/ n: Q1 ~/ d( |( {, L: f图 2 “HAVFARM 1”深海养殖工船
" B: V2 ?6 i; Q! m8 F' G" P4 V1 F在网箱养殖监控技术方面,主要是结合传感器 和有线/无线通信技术获取海洋环境、生物状态、 养殖设施的相关信息,实现远程监测。这些方案普遍采用 2 级模型:养殖点和监控中心。由养殖点的传感器采集数据,再用有线或无线的方式传输到监控中心。例如,海南陵水“5G+海洋牧场” 采用 5G 网络技术,集成网箱海洋环境实时在线监测系统,对深海网箱水质水文环境及内部状况进行实时 在线监测(图 3)。
+ `/ f3 \( P- f6 j% E
" X4 i% C$ W- J4 P
) e$ A- [& E+ H1 c$ g- w, l/ L6 k
/ s0 V L/ b' c3 c5 R# `$ w
0 \* _8 s( A3 {) c0 H- ^图 3 海南“5G+海洋牧场”海洋环境监测系统
R) S E, N* `) x: @; Y2 海洋环境监测系统方案设计 3 k6 f$ v$ P" e
针对深远海网箱数字化管理和集约化养殖需求,基于高精度温盐深测量仪、无线数据传输网络、 监测信息实时处理与集成等关键技术,设计了与深 远海大型智能化养殖网箱配套的海洋环境监测系统,实现温度、盐度、溶解氧等海洋环境要素的远程实时监测。
8 [9 r. S( y# R2.1 系统组成 ' c( a6 \& l9 r) `
海洋环境监测系统硬件主要由数据采集子系 统、控制子系统、数传子系统、能源子系统等组成 (图 4)。软件主要是上位机软件。+ a5 g. N# g) G/ Y0 ^3 }* {1 h0 \
: n F$ T9 b7 S
# D9 Y# ^( J& ^# Q4 [. A5 ?图 4 系统组成
* s* J6 g1 T! K( m0 w8 ]数据采集子系统包括搭载的各式传感器、配套的电平转换、A/D 转换元器件等数据采集设备,负责采集海洋环境参数。控制子系统包括监测点的主控 Soc 与其配套的控制程序,根据控制指令控制各传感器的采样频率、采样周期、采样模式等,监测各部件运行状态,将操作结果与运行信息反馈至监控中心。数传子系统负责转发监测数据、状态数据至中控系统,转发控制指令至各传感器。能源子系统负责为监测点供电,采用备用电池设计,在主电源切断的情况下可临时供电,保证系统不间断运行。上位机软件是数据采集子系统与集中控制系统及控制人员的接口,主要负责监测信息实时处理与集成。 ; W- F5 G& j& u, g' N; Q- {
2.2 监测规划 ( D# j1 I4 X+ K
& H3 g" i% w/ y- h' _% v以图 5 所示网箱(直径 110 m,工作吃水 40 m)为例,在网箱的中央及外围立柱的不同深度设置若干个水下监测点,实现表、中、底层水体覆盖。每个监测点均配备温度、电导率、溶解氧和压力等通用传感器。在中央立柱设置海流传感器。在网箱平台设置水上监测点,配备姿态、气象等传感器。此外,可根据养殖产品种类的不同选配其他传感器 (表 1)。
$ h S) c! R U, u/ y* P; p% z: ~! f$ T* f3 E: c
! L% I9 f1 B( ]3 G
图 5 养殖网箱示意图 - M! `. y& c2 K. ]
# Z; p/ U$ X# f" E0 |6 i; M& R
4 a8 ~" G7 C: I5 Z& i1 \/ J7 H8 ~* C
) h( P: l' V. T. b2 O- Q; E2 j4 S0 N/ d7 d7 _8 m; h
& I" w* |' a) D* L# ]- i
3 硬件设计
7 J5 V4 u; n4 b" c: \& s* T- a3.1 高精度温盐深测量仪(CTD)
0 @* W8 ~$ y9 Q% G# [4 N. e2 @& Y: `CTD 是数据采集子系统的核心设备,其性能对监测系统的技术指标具有决定性影响。CTD 由温度传感器、电导率传感器、压力传感器、测量转换电 路、综合控制系统、耐压舱等组成。测量时,由传感器感应海水的温度、电导率及压力要素,通过转换电路将物理量变成电信号输出,由综合控制系统接收并通过通信接口传输测量数据。高精度 CTD 研制的核心工作是温度、压力和电导率3种传感器的研制,重点为电导率传感器研制。研制的七电极电导率传感器具有较高的测量精度,其电导池实现了电流电极和电压电极的分离,可显著减少电极极化阻抗,导流空间大,响应时间快。七电极电导率传感器的电导池两端有 2 个 接地电极,可有效屏蔽外部干扰。研制的温度传感器采用新型微结构形式,具有快速响应、耐高压等特点。此外,还研制了硅压阻型压力传感器(图 6)。针对网箱监测点多套 CTD 同时工作的应用场景,在测量电路(图 7)设计方面采用了低功耗及抗干扰设计。通过选用低功率器件,降低功耗及温度。通过降低单片机的晶振频率,减小来自电源的噪声,在尽量靠近 A/D 转换器处接地以及屏蔽振荡器区域,来增强抗干扰能力。: T F* Y6 t4 W5 P
, k' y7 t$ ^; _( a* m8 X) i( \# `6 b' @5 f
2 K& {3 c/ \6 p s: j* C0 Y
图 6 电导率、温度、压力传感器 & {% [1 d9 |/ {, y k s; g9 }0 [& p7 p
# P7 c1 J8 [ p Q% G图 7 测量电路
# Z* q; s0 R2 e* k% e$ A7 b' x
: i! \6 B& u' y( Z5 {/ s4 s
% Y, ^; q" {6 F2 b3 }9 S9 |3 ~; P完成 CTD 样机加工及相关调试后,为保证测量准确性,利用 CTD 校准实验室开展了传感器校准(图 8)。通过试验方法建立了传感器输入输出关系,进而获得校准系数等相关参数。
" Q& }; F6 u. D1 F7 m- ^7 ^0 F. b. g9 b1 z
图 8 传感器校准 + O8 d3 X, n0 W4 E; M3 P5 Z
3.2 数据传输网络
. w4 c3 Y% F& k, e由于深远海养殖水域远离海岸,需采用有线/ 无线数据传输网络将网箱数据实时传输至岸站。综合考虑成本、功耗及通信技术发展趋势,采用网箱有线组网、网箱与岸站间无线传输的数据传输方案。网箱监测点的传感器通过串口服务器、网线等连接至以太网交换机,组成局域网络。网箱与岸站间架设一对无线网桥,上位装置以及无线网桥也连接至千兆以太网交换机,实现网箱与岸站监控中心的无线数据传输。无线网桥采用 airFiber®X AF-2X,具有高达 17.1 Mbps/MHz 的频谱效率,发射距离超过 200 km,吞吐量大于 500 Mbps,可以 设置不同的上行与下行任务周期来满足非对称流量需求。如图 9。. c" S* b7 ^8 y- Q5 ^9 c
3 Y0 F7 o2 z% o8 O9 y. ]
图 9 数据传输网络示意图 1 @: B0 i0 G. b
4 软件设计 D, Y: i' A( F. N
监测点将数据传输至岸站,通过上位机软件实现监测信息的实时处理与集成。上位机软件的主要功能为实现人机交互,将采集的数据、工作状态等信息进行图形化集成显示,便于中控系统控制以及人员实时监测,同时提供下位机控制接口,将上位机控制指令实时传输给数采子系统。软件具备数据采集、数据存储、数据显示、数据输出及传感器控制等功能。软件可采集温度、电导率/盐度、压力/深度、溶解氧、流速、流向及姿态等参数以及工作状态信息,采集频次可调;采集数据存储于本地数据库;以文字、实时曲线等方式显示;以 UDP 报文形式输出至中控系统;可控制传感器开关及观测频次。软件开发环境为 Microsoft Visual Studio。数据接入部分使用 C#/Golang/Rust 编写,从串口接收解 析消息帧,发送操作指令,采用第三方 WebSocket 库。数据库方面,由于需承载的数据量较小,选择应用广泛的关系型数据库 SQLite 和 MariaDB。* c- I2 `: h1 v+ \
系统需要管理主要资源是设备和数据信息,因此数据表分为 2 类,分别存储设备和数据信息。每一类数据表均有 1 张总表,保存所有设备的基本信息和所有消息的基本信息,作为指向详细信息的索引。对于每一种设备/消息,均有一张设备/消息表存储所有该类设备/消息特定的信息。应用服务器连接数 据接入单元,同数据库通信,对外提供 RESTful API。浏览器即可作为客户端,简化额外软件要求。使用 WebSocket + Json 交换数据。实时显示传感器 数据,使用 Echarts 3 和 Measurement Studio 可视化历史数据。观测数据存入数据库中,除使用客户端 查看历史曲线外,还可以使用通用数据库管理软件 (DBeaver、Navicat 等)管理数据,也可导出为通用格式(.xls、.csv、.txt 等)进行后续处理。
; k( {7 h# ?. z( A" c# y3 w5 水池功能验证试验 4 ~: E5 F+ f, T+ \! u5 k
开展了海洋环境监测系统(包括 CTD 及上位 机软件)的水池功能验证试验(图 10),对监测 系统的数据采集、传输等功能进行了初步验证。通过与美国海鸟 SBE–37 CTD 的水池比测,系统工作状况正常,监测数据正确、稳定、可靠。
* M8 T( ?' f: _! n
P; y$ u7 k6 F' U: j图 10 水池功能验证试验 1 e, S l- o! u
6 结束语0 `8 _( ?& ]! E+ ]1 ]0 g
系统初步实现了温度、盐度、溶解氧等海洋环境要素的远程实时监测,但在长期工作可靠性等方面仍有待检验,在监测要素及数据处理应用方面仍有待拓展。& Q0 B& \% H& f3 W4 B
下一步,计划研发集成化学、生物等多要素传感器,开展监测设备海上长期应用试验,开 发水质预测预警等数据分析产品,满足数字化管理和集约化养殖需求,提升海洋环境监测及渔业养殖装备国产化水平,助力“蓝色粮仓”建设。0 k6 a5 |0 Q7 V1 Q9 U# t; o. V
& T1 |9 P* L4 t. i2 X; f该文章来源互联网,如有侵权请联系删除
! K3 r, d$ B9 D3 P( c& R查看原文:www.52ocean.cn |