海洋监测仪器装备是关心海洋、认识海洋、经略海洋的基础保障和重要前提,虽然我国海洋监测仪器装备技术水平与业务化应用近年来进步显著,但相比海洋发达国家仍在“卡脖子”技术、关键设备研制方面存在一定差距。本文从全球海洋立体观测网、国家近海业务化观测系统、海洋环境监测探测技术与核心装备3个层面着手,辨识并剖析了我国海洋监测仪器装备的发展需求,梳理了我国海洋监测仪器装备发展现状。
, v$ _7 O! t, x1 T* v# i* n |$ a, o' j- e: Z: d- c1 |
$ x X6 D- e$ G q$ J. m9 b, D01
+ e3 R* Y6 m5 A* R2 p6 e8 t 海洋立体观测体系建设: p4 K* w a4 W) r M$ j3 a
# q$ F! P H4 e着眼海洋防灾减灾、海洋开发、海洋管控、气候变化研究等需求,建设全球海洋立体观测网,是实现海洋强国的必经之路。4 \8 J& @( C( n" x$ @: R/ w
“十三五”时期,我国将全球海洋立体观测网列为重大工程,自主发展由HY-1B、HY-1C、HY-1D、HY-2B、HY-2C、HY-2D、中法海洋卫星7个星座组成,覆盖海洋水色、海洋动力、海洋监视和监测三大系列的遥感卫星系统,逐步形成多种观测技术优化组合的全球海洋观测与数据获取能力。后续将开展国家海洋环境实时在线监控系统、海外观测站点建设,建成全球海洋立体观测系统,保障海洋生态、洋流、气象等观测应用。+ a# s# t+ q8 W/ A: t2 s
在全球海洋观测站点覆盖方面,我国在西太平洋、东印度洋、南极、北极等海域部署观测站点,初步开展全球重点海区观测。“十三五”时期,我国积极整合国家海洋观测能力,深度参与国际Argo计划、热带太平洋观测系统计划,建设覆盖太平洋台风活跃区、厄尔尼诺区等重点区域的长期观测系统,成为国际海洋观测的重要参与国。此外,我国参与建设国际岛礁生态链和观测系统,与21世纪海上丝绸之路沿线国家共建海洋观测系统,提升对全球海洋预报观测的贡献度。8 N9 x0 h4 w5 Q, d: I5 Q
在全球海洋数据通信方面,随着北斗卫星导航系统全球服务能力的形成,基于北斗卫星通信的海上实时传输终端应用趋于成熟。天通一号卫星星座建设完毕,覆盖太平洋、印度洋大部分海域,具备基本的数据通信能力。低轨通信卫星星座有望在5~10年内进入全面应用。基于水声通信的水下无线传感器网络研究深入开展,试验结果基本达到国外主流水平。蓝绿光通信技术进入海上试验阶段,标志着无线光通信技术进入工程化应用研究阶段。
, L5 C7 H K- f8 A! H! \在海洋大数据管理方面,我国初步建成以气象局、海洋局等机构为主体的海洋立体观测数据业务处理平台,但管理方式、数据标准、数据共享等有待协调统一。传统海洋强国积极建设海洋数据管理及共享机制,海洋环境监测规范及标准、海洋科学数据共享平台较为完备,支撑了资料收集、组织、存储、检索、维护、共享工作有序展开;随着国际海洋资源竞争加剧,各国间的数据资料趋向利益互换、协商交换的共享模式。相较之下,我国海洋大数据管理与应用水平有待加强。7 k' S- m9 M( q5 w' y
02- q, c% [5 r- L( h6 |8 F
近海业务化观测网! g0 P' E; j& l% t' j' y
9 q* c6 l& l/ Q
我国初步建立以卫星遥感、海洋浮标、岸基台站为核心,地波雷达、断面调查、志愿船等手段为辅助的近海业务化观测网,观测参数包含气象、水文、生态等环境参数,覆盖渤海、黄海、东海、南海(近岸)等海洋区域。观测参数、站位分布密度、长期连续性等基本满足海洋业务化观测需求,积累了大量资料数据,在数据处理、管理模式、体系建设等方面形成系列标准和规范。
6 y0 u+ O2 s; a X; L在海洋业务观测网分布方面,根据《海洋技术进展2021》数据,在位海洋站观测系统有330多个,海岛(海上平台)自动气象站有310多个,强风观测站有200多个,船载自动气象站有100多个,业务化锚系浮标有230多套,表层漂流浮标有200多套,Argo浮标有200多套,潜标有40多套。专业河口水文站、验潮站、气象站、雷达站等也有一定规模。国家海洋调查船队常年调查的海洋标准断面调查站位有100多个,海上志愿观测船有数百艘。
5 y5 S& g2 a) Y5 u0 m“十四五”时期,围绕海洋环境安全保障能力提升,重点发展海洋自主传感器研制能力(如可移动观测的海洋生物化学原位传感器、电磁场传感器、声学智能探测仪),高可靠智能固定观测平台技术(如高可靠性实时通信潜标、海气交互大剖面综合观测浮标),易布放式移动观测平台技术。开展海上试验,促进新研传感器、平台、组网技术的规范化。构建自主可控的南海观测示范系统、西太平洋深海科学观测网等,发展自主同化及预报技术,实现重点海区观测水平、预报产品、预警能力的跨越式发展。开发海洋生态环境保护、治理、修复等共性关键技术,支撑海洋生态文明建设。
5 F7 G- N. X) x' Y- H8 Y7 ]( [随着观测技术、传感设备的发展,观测需求的增加,新型传感设备进入近海业务化观测网成为常态,观测参数不断丰富、观测精度不断提高、覆盖范围不断扩展。. r6 D( s5 u( O4 l" I
5 D; h% i' b& _: ]- G
03
" F- F9 I5 p- u# G! N自主化海洋环境探测技术装备
( E) s/ w3 j; S- t4 @' `! `
) c4 [* R0 W8 U g) q3 P) |1.海洋观测平台技术$ q) K1 g( _1 w/ |3 @- n
海洋观测平台是各类传感器的载体、全球海洋立体观测网建设的核心节点,我国已基本掌握固定海洋观测平台的核心技术。大型浮标平台技术相对成熟,规格系列化的海洋浮标产品供应市场,整体达到国际先进水平;特别是大型浮标,在极端恶劣海况下的可靠性达到国际领先水平,满足沿海海域业务化运行需求。潜标研制工作起步较晚但发展迅速,潜标观测系统关键技术基本获得突破,数据实时传输、长期在位观测、水声探测等技术进展良好。海底观测网已在东海海域进行示范运行,验证了相关技术成果。$ p; D( c* |% A2 I
水下、水面、空中无人航行器等移动观测平台发展迅速,有效载荷和续航能力进一步提高,技术层面进步显著;保持多样化发展态势,种类分布与国际主流同步。在无人潜器研制方面,波浪能滑翔器、无人水面艇、无人帆船、深海Argo,部分遥控水下机器人(ROV)、自主水下机器人(AUV)、载人水下机器人(HOV)、水下滑翔机等装备的整体性能接近或达到国际先进水平。深海环境中的水下导航与定位、浮力材料、水下高能量密度电池等技术则有待研究和突破。
: A# r: F$ i9 A6 W X- X在卫星平台方面,发展了海洋水色、海洋动力环境、海洋监视监测等系列海洋卫星,多颗卫星在轨运行。逐步建设由国产卫星主导的海洋空间监测网,基本实现全球海洋环境的逐日观测。此外,在水色遥感、海洋要素反演、卫星精密定轨等技术方向成果丰硕,支持了业务化监测应用与示范。2 z! U( I! R! C4 ?. b
2.传感器技术
v1 f0 p1 J% k8 O) R传感器技术是构建海洋观测能力的基础和前提。近年来,我国在海洋环境传感器技术方向进展显著,新型传感器不断涌现,促进海洋观测、监测、探测朝着实时、原位、精细、立体、智能方向发展;但对比国际先进,国产化海洋传感器技术整体水平仍处于“跟跑”阶段。在“十二五”“十三五”时期国家重点研发计划等渠道的支持下,约70%的近海、常规传感器实现国产化;但超过80%的深远海、高端传感器依赖进口,潜在的市场垄断和技术封锁不可忽视。国产原位在线生态传感器的长期可用性仍待提高。在传感器通用技术方面,受工业基础、原材料、关键元器件等制约,敏感元件、微弱光电信号检测与处理、功能材料等系列关键技术尚存差距。
% [ z+ g7 x' ^; e' t% x5 a来源 | 本文节选自《我国海洋监测仪器装备发展分析及展望》原刊于《中国工程科学》2023年第25卷 d4 A2 ]8 c/ W. X. }
作者 | 王军成,孙继昌,刘岩,刘世萱,张颖颖,陈世哲,漆随平,王波,厉运周, 曹煊,高杨,郑良
( X: Z- f c. X( t8 u排版 | 数智海洋公众号 - n3 p1 m% e( P. P1 z7 X
7 A' ?! i4 J& K: m j: {7 {& o该文章来源网络,如有侵权请联系删除* G5 t7 F! ^) y& o7 y
查看原文:www.52ocean.cn |