收藏本站 劰载中...网站公告 | 吾爱海洋论坛交流QQ群:835383472

千禧年大奖难题之一纳维-斯托克斯方程的解的存在性与光滑性的证明

[复制链接]
) b5 F* x" Z+ L, D1 d) `6 a% I

; [3 R7 D" S- ?3 t/ [+ ]
7 q; S# r8 w. x6 j美国著名物理学家、诺贝尔奖获得者费曼曾经说过:湍流是经典物理学中最后一个尚未解决的重要问题。从雷诺1883年在曼切斯特做的圆管流动实验开始算起,虽然湍流现象已经被广泛研究了近140年,但是湍流产生的物理机理至今仍不清楚。据传,量子力学奠基人之一、德国著名物理学家、诺贝尔奖获得者海森堡临终前曾在病榻上说过一句话:“当我见到上帝后,我一定要问他两个问题——什么是相对论,什么是湍流。我相信他只对第一个问题应该有了答案”。由此可见,湍流问题的解决难度之大令人难以想象。3 c1 p- |4 U$ A! J' ~* V. L) X
纳维-斯托克斯(Navier-Stokes)方程是由法国科学家纳维(1821)和英国科学家斯托克斯(1845)建立的。经过100多年的研究,人们相信Navier-Stokes方程是描述湍流的正确方程。现代Navier-Stokes方程直接数值模拟(DNS)的结果几乎与实验数据完全一致。从工程角度考虑,Navier-Stokes方程描述湍流已满足应用要求。但是,数学家更关心的是纳维-斯托克斯方程的解的存在性与光滑性,这个问题至今没有得到证明。为此,美国Clay数学所在2000年公布的7个千禧年百万美元大奖难题中,Navier-Stokes方程为其中之一。
! R9 @6 R( a6 ~9 o- D                                

/ b2 d) m& d; O+ h# y* h                               
登录/注册后可看大图

2 V3 c# t1 Z0 D6 I& Q$ z3 j3 o- N7 s! i% L& @. z
1934年,法国数学家勒雷(Leray)证明了纳维-斯托克斯问题弱解的存在,此解在流场中平均值上满足纳维-斯托克斯问题,但无法在整个定义域的每一点上满足。现在,数学家想要解决的是纳维-斯托克斯的强解问题,即其解需要在流场中定义域上的每一点上都要满足。用另一种说法,对一给定的起始点流动条件,可以准确预测随时间变化后面发展的任意时刻的流动状况。或者对湍流流动中的任何一点任意时刻的流动,可以精确追溯到它的起始点的流动的起始条件。
9 y7 S  C9 p! o& Y: c; p. d: u3 o) a" V( e
美国Clay数学所设定了该问题具体的数学描述[1]:证明或反证下面的问题:在三维的空间及时间下,给定一起始的速度场,存在一矢量的速度场及标量的压力场,为纳维-斯托克斯方程的解,其中速度场及压力场需满足光滑及全局定义的特性。: M" |6 l$ d' O* ]; V! n: R+ R

  K6 b7 |% e6 U8 }. p对转捩流动和湍流流动,我们同时用能量梯度理论和泊松方程分析两种不同的方法证明了Navier-Stokes方程不存在全局域上的光滑解。理论得到了实验结果及数值模拟结果的验证。我们采用能量梯度理论的证明请见文献[2]。下面是采用泊松方程分析方法的证明[3]:
( J+ K' E* t4 j4 k; N) z1 v
$ P* Y  y) w% _% s# F7 N0 ]$ `
! j% h! Q5 R1 C! F! g

6 D$ w/ L) U6 f0 D/ D# e( j- F; g5 s2 |/ f
(1)对三维空间的平面channel流动(压力驱动流动),Navier-Stokes方程可以写成下面泊松方程的形式,3 s% A' m/ |1 q/ @
∇2u(x,y,z)=Fx(x,y,z,t),在静止壁面上的边界条件为 u=0,式中u为x方向的速度分量。在整个定义域上,定义源项 Fx(x,y,z,t)>0 and Fx(x,y,z,t)≠0。如果Fx(x,y,z,t)=0,则整个域上流体是静止的,所讨论的问题就没有意义了。对y和z方向,可以写出另外2个速度分量的泊松方程,这里我们只讨论u分量。1 K9 i2 b/ h% C$ Q
给定起始条件,按照要求,这里我们规定起始速度场为一光滑的层流流场。然后,观察流场在扰动作用下的发展和变化,这是层流到湍流的转捩过程中的转捩流动(transitonal flow)的特征。% T3 x' Z* R6 y  S3 M
(2)根据观察(实验和数值模拟),层流流动在扰动与基本流动相互作用下,在足够高的雷诺数下,速度剖面会发生扭曲,畸变。研究发现,在一定的扰动程度下,流场中存在这样的点,Fx(x,y,z,t)=0 (详细发现请见下面文献)。下面用两种观点来解释此处为奇点:(a)Fx(x,y,z,t)=0 这样的点在流场中定义域上是没有定义的,所以在转捩流动中出现的这样的点是流场中的奇点。 (b)我们知道,奇点是没有体积的。当流场中 Fx(x,y,z,t)=0 的点形成后,随时间进一步发展,Fx(x,y,z,t)=0 的点在y方向具有一定宽度(宽度大于0),此时利用泊松方程解出的当地速度为 u=0。说明此处流向速度u发生了间断,间断点即为奇点。1 _' n# Y8 O0 \1 {, t+ I
由上面论证可知,Fx(x,y,z,t)=0 这样的点是泊松方程(Navier-Stokes方程)在流场中定义域上的奇点。另外, 我们用能量梯度理论也已经精确地证明了,在压力驱动的流动中,这样的点必然发生流向速度的间断[2]。采用两种不同的方法得到的结果可以互相佐证。6 P; `) s+ Q' H3 I
(3)Navier-Stokes方程在流场中的奇点处速度导数不存在,所以是没有解的。因此,即使方程在流场中奇点以外的其他点上都有解,但由于奇点处没有解,流场的解是间断的,是不光滑的。我们得到结论:Navier-Stokes方程在转捩流动中是不存在光滑解的。6 @. P) f( w+ t+ P, c
(4)对湍流流动(turbulence),由于流场中非定常的旋涡的存在,其瞬时流动分布,存在大量的奇点(Fx(x,y,z,t)=0的点)。实际上,湍流的维持就是依靠这些奇点存在而实现的。因此,对湍流流动,Navier-Stokes方程不存在光滑解。
% ^5 L, l' a/ D, F  {7 j9 K4 q' x% Y3 S2 H; G; h0 j" _# M0 h) J
1 c& ]2 h& f: r0 k: b% K
; M2 {$ t6 m6 B! n  R, R
需要指出,上述奇点的出现是因为,三维空间的平面channel流动(plane Poiseuille flow)的泊松方程的源项是不能任意的,必须大于零的(或者小于零,即速度沿x负轴方向流动)。从物理学上考虑,就三维空间的平面channel流动来说,对层流流动和湍流流动,这个给定的源项的约束定义,都是必需的。否则,这个问题就不是 well posed。如果我们讨论的是两个平板间的三维的热传导问题,其泊松方程的源项是可以任意的,而源项为零的点就不是其泊松方程的奇点(因为是具有定义的点)。具有不同的约束性质的这2个问题,不能统一按一般泊松方程的特性来讨论。
" N7 B$ F0 y% q* f( S& d# Z 1 X' p) c1 e; h' \& I1 \
结论:对转捩流动和湍流流动,纳维-斯托克斯方程的解的存在性与光滑性问题,答案是否定的。9 V5 L2 v4 g; p7 c, }$ }1 w

+ M- e; r  `6 Z2 n/ E( N. K参考文献
" A( f! e  h) s1.   Fefferman, C.L. Existence and Smoothness of the Navier-Stokes Equation; Clay Mathematics Institute: Peterborough, NH, USA, 2000; pp. 1–6. " g4 |7 k# F% l' u2 O; ~: I' V
www.52ocean.cn6 s' r/ D3 Y6 s& `5 J0 v" p7 p
2.   Dou, H.-S., Singularity of Navier-Stokes Equations Leading to Turbulence, Adv. Appl. Math. Mech., 13(3),2021, 527-553.  https://doi.org/10.4208/aamm.OA-2020-0063      https://arxiv.org/abs/1805.12053v10  
' ?! Y# ?; f- G) r3 B3.   Dou, H.-S., No existence and smoothness of solution of the Navier-Stokes equation, Entropy, 2022, 24, 339. https://doi.org/10.3390/e24030339
5 X3 r+ M- H4 H7 v/ H+ {# S+ `! I; v. ~' M
" y1 L) J( C$ A

( q$ @8 g0 N& }* L/ k1 O/ U( y# V" c3 T9 Z! m. X

0 S2 @+ a$ \' c2 Y( H, l$ [# P% i
8 `. B! u  ?( w, R; l  Y4 ]- \5 G, C! m& H! z1 Z% U

, o* Z+ T+ t$ G/ w3 g5 `; x  ?, H, H+ ^7 z0 x

% E! z8 b: ~+ O/ p" Y2 a6 r4 D4 n
. ^& C% I! G' s$ Q+ e- P/ h3 I/ C  k) e% _# G/ S6 W

3 i: [7 u3 \9 G* ~* n# p  g3 p! _$ x1 V( e
/ U/ J! A; d) W+ n8 A0 P9 g0 [! A
7 S; B7 X8 W1 M' E
                    
: ^, l" j6 I4 x7 W0 U4 B1 C- r. y* s4 G1 q9 c. Q
                                        转载本文请联系原作者获取授权,同时请注明本文来自窦华书科学网博客。
回复

举报 使用道具

相关帖子

全部回帖
暂无回帖,快来参与回复吧
懒得打字?点击右侧快捷回复 【吾爱海洋论坛发文有奖】
您需要登录后才可以回帖 登录 | 立即注册
三观道人
活跃在前天 18:26
快速回复 返回顶部 返回列表