世界数学难题: 纳维-斯托克斯方程会得到解决吗?

[复制链接]
/ w) N* F$ A! w+ \% K
                               
登录/注册后可看大图

! \1 X/ ~" b" Y
图 1 纳维-斯托克斯 (Navier-Stokes)方程(1821-1845)
  ~/ z  H* p; O6 V4 }
2005年曾经是世界爱因斯坦科学年,是为了纪念爱因斯坦1905年发表的那三篇划时代的学术论文100周年(布朗运动,狭义相对论,光电效应)。
! s4 Z; u# Q9 t5 R4 T2005年,也是美国Science杂志创刊100周年。在庆祝创刊125周年之际,Science公布了125个最具挑战性的科学问题,作为下个世纪的奋斗目标。其中之第122问题为:纳维-斯托克斯问题会得到解决吗?(Will the Navier-Stokes problem ever be solved?)/ n8 ?; a: r  n$ L

( W3 P5 {" C% {& Z+ u在16年之后的2021年,随着科学的不断突破,许多问题得到一定程度的解答,一些问题也更加深入,上海交通大学携手Science杂志发布了“新125个科学问题”。 Navier-Stokes (NS)方程问题位列第二(数学类)。
& d, ~1 q! {; f  b
  b5 z0 @: ~! R; c
                               
登录/注册后可看大图

" A1 i) y. O& r+ m
图 2 法国科学家及工程师纳维和英国物理学家数学家斯托克斯
% i5 w: M* C7 c' }% g% X4 y
Navier-Stokes(NS)方程是法国科学家纳维和英国科学家斯托克斯建立的,是支配流体运动的方程,至今已有200年的历史 (图1和图2)。人们认为NS方程是描述湍流的正确方程,现实工程实践已经证明了这个看法基本是对的。可是,对于NS方程的数学和物理学特性,科学家对它了解甚少,尽管在工程中已经获得了广泛应用。另外,自从雷诺1883年在曼彻斯特做了那个著名的层流-湍流转捩的圆管流动实验以来,也已经过去了140年了,湍流的机理仍不清楚。
% F, k5 o# J5 RNavier-Stokes方程是否存在光滑解的问题也是美国Clay数学研究所在2000年所确定的数学方面的7个千禧年大奖难题之一, 至今没有答案。' f' Y8 ?8 q) ~+ k' O: p8 T
Dou(2021,2022)的文章分别用能量梯度理论和泊松方程分析方法,对Navier-Stokes方程问题进行了精确的证明,首次发现了NS方程的奇点(速度间断),研究结论是对转捩流动和湍流,NS方程不存在全局域上的光滑解。这些理论结果,与各种流动的大量实验数据和数值模拟结果获得了一致 [1-3]。' q; e5 t  r( ^. S+ j
因此,对“纳维-斯托克斯问题会得到解决吗?”这个问题已经有了答案。或者说,实际上这个问题已经解决了 [1-3]。' K2 }0 e1 j  s1 m
同时,湍流产生的百年物理学难题也解决了,作者发现了湍流产生的机理是:湍流产生的必要充分条件是流场中出现NS方程的奇点(速度间断)。这样,对湍流产生的问题,NS方程的光滑解问题,作者确信地说,这2个问题都已经解决了。
8 R+ y5 S& d* \0 {2 |许多读者认为,作者的文章发表后2-3年以来[2-3],没有人出来公开肯定,也没有人公开否定。网友留言认为,就这2个科学问题的难度及重大科学意义,应该可以引起科学界非常大的反响甚至引起轰动。为什么没有?9 H8 K# U0 Z& \
那么,既然解决了这么重大的世界级科学难题,而且是2个问题同时解决,一个是数学问题(NS方程光滑解问题),一个是物理学问题(湍流产生之谜),为什么没有引起国内外学术界的轰动?因可能比较复杂。作者认为:
; k: U- V) }) I* {( v(1)第一主要是因为论文没有发表在顶级期刊上而是发在了2个SCI三档和四档的期刊上[2-3],所以不会引起那么大的轰动。现在,大家看看,只要发表在Nature和Science上的文章,是多么风光。作者也投到了流体力学专业的最好的国际期刊上,被拒稿了。评审人和编辑没有指出论文中的任何错误,只是不建议接受。
9 y2 C. D1 M, P2 c1 U8 [2 h8 `2 M0 @2 o# p; d/ c
(2)第二是作者采用的2个理论分析方法比较另类能量梯度理论(物理学泊松方程分析方法(数学,都是不同于目前各个学科大家通常所采用的方法,很另类,人家不了解,是作者独创的2个方法。那么,为什么不用大家通用的方法?原因是,所有现有的方法也都用过,用这些方法解决不了,作者才创立了这么2个方法。不管采用什么方法,从数学和物理上解决了问题才是目的。需要强调的是,针对平面Poiseuille流动,2种方法的结果相同,均严格精确地证明了Laplace为零的点是NS方程的奇点。而奇点引发速度涨落,导致湍流。
5 N) A, R* R/ {/ y1 l# R# G有没有人认真思考过,为什么湍流这个问题100多年都没有解决了?湍流转捩/湍流产生的原因都不知道?到底是不是思路错了?
  Z) N) F9 r1 S0 `; ^7 |# `著名科学家,普朗特、泰勒、冯卡门、Kolmogorov、林家翘、Bachelor、Orszag,包括诺贝尔奖获得者海森堡、费曼、朗道、Chandrasekhar、Onsager,为什么没有解决湍流,为什么有的人后来放弃了?他们的思路和方法都是正确的吗?(改行的有:海森堡:量子力学;Chandrasekhar:天体物理;Onsager:非平衡态热力学;林家翘:天体物理;Bachelor:悬浮流动)。
: @/ A$ X; C+ b1 V! v1 g(3)第三是人们的判断能力问题所提的问题关乎到数学,物理,流体力学及工程,这样几个学科。哪一位读者或者大牛,如果不去阅读大量文献,就具有这样的判断能力? 国际国内大牛从事NS方程光滑解这个方向的,都是数学家,他们用的是数学不等式的函数分析方法,对湍流了解不一定很多。而研究湍流的人都是流体力学和CFD的人(APS,AIAA,ASME相关),都不怎么关注NS方程光滑解的问题。而且这2个领域都几乎没有交集,发表论文的期刊和参加的学术会议也都是不一样的。因此,对于作者的研究成果,就目前知识,做出这个判断的难度比较大,如果反对错了,或者支持错了,哪一位大牛也不想将来去承受这样的尴尬。湍流这个古老的学科,短期判断看来很难;并不像超导,基因编辑,一出成果,那么容易引起轰动。
* Z- M& Q( C. K9 S; N* U( n, u0 z作者认为,科学研究的目的是追求真理,正确的科学发现(discovery),终究会得到承认,就像哥白尼的太阳中心学说一样。科学研究不能追求暂时的风光和轰动,如果对科学发展没有实质性的创新性的贡献,风光之后会是一地鸡毛。翻看一下科学史,历史总是公正的。% X* W8 J! u. M6 ]
关于能量梯度理论方法,以前曾做了介绍 [4-5]。今天以更通俗的语言,介绍利用泊松方程分析的方法,证明奇点是否存在的思路和概念(Dou 2022), 也即主要讨论泊松方程(NS方程)的奇点问题 [3, 6]
$ ?; W6 i# {9 \9 W(一)数学上奇点的定义2 @4 l5 [" m2 G+ Y- u( L' A
英文维基百科数学上奇点的定义如下:
2 k8 Z0 A$ D/ t6 d2 K" ZSingularity or singular point may refer to: Mathematical singularity, a point at which a given mathematical object is not defined or not "well-behaved", for example infinite or not differentiable.
, C$ [, O$ V& a" D奇点一般指的是这样的点,在这样的点上,一个给定的数学概念(变量或者函数)未被定义,或者特性异常,例如无穷大或者不可微分。4 j. h3 @$ T; h. Z* G$ {3 {
(二)NS方程的奇点的定义  O' o/ D% ^% N$ C3 w. }
根据数学的定义,NS方程的奇点应该是这样的点,在这样的点的位置,变量(u, v, w, p, 其中一个或几个)趋于无穷大,或者不可求导。# c2 O1 U/ N! P6 S
Leray (1934) 给出的定义是,NS方程的奇点为速度或动能为无穷大(blowing up)。数学家研究了近100年,到现在也没有人发现这类奇点是否存在。即没有肯定也没有否定。需要明确指出的是,现今对湍流的大量的DNS数值计算结果,从没有发现NS方程的速度或动能为无穷大。作者认为,NS方程发生blowing up的可能性非常小。
; {, Z( D) ?4 Q; r% z' ^4 bLeray(1906-1998)是著名的法国数学家,1979年Wolf数学奖获得者,比前苏联著名数学家Kolmogorov(1903-1987)获得Wolf奖早了一年(图3)。  S3 h  h" p% `7 c. z
Dou (2021,2022) 所发现的NS方程的奇点,必须是在非定常流动中,此点位置速度发生瞬时间断(不连续),在此位置速度不可求导。两篇文章分别采用了2种不同的方法进行证明,结果相同 [1-6]。0 g3 I. t0 m8 `- `/ @/ ?" W

- ~  g6 Q9 `1 b* E5 Y# S4 M                               
登录/注册后可看大图
% r3 E( y6 n+ }, ]: N
图 3 法国数学家J. Leray (1906-1998)和 前苏联数学家A. N. Kolmogorov (1903-1987)

6 Q" ?  e0 l" C- H: @! B(三)判定NS方程的光滑解就是寻找NS方程的奇点
' b1 s7 H0 D; [8 c! Y; u$ C确定NS方程的光滑解的问题,实际上就是寻找NS方程的奇点的问题,也就是原先给定的没有奇点的初始流场,随着时间增长,会不会演化出来奇点。或者说,也就是证明一下,NS方程里的求解变量,在给定问题的定义域里,随着时间变化(有扰动影响),是不是处处连续光滑、可微分的。
- g0 y1 f0 G1 C+ w如果严格精确地证明了NS方程不存在奇点,那么变量都是处处可微分的,方程可以积分,那么NS方程就有光滑解。: c/ _' @% z5 l2 E7 ^
如果严格精确地证明了NS方程存在奇点,奇点处不可微分,方程就不能积分,那么NS方程就没有光滑解。5 ]; X  y4 x# J! U. K
在上述两种情况下,对千禧年难题给出的问题,NS方程是否可以求解,答案已经清楚,就没有必要进行偏微分方程的复杂的数学不等式的函数证明了。5 G* n. G) S5 z6 ]: I( y3 I

0 ?9 H0 I7 W" _* n                               
登录/注册后可看大图
* x4 ~6 t* s! J! J/ T4 s/ e
图 4 泊松 S-D Poisson (1781-1840)and 拉普拉斯 P-S M de Laplace (1749-1827)。他们都是法国数学家。
, V- E% J5 [3 [
(四)泊松方程方法确定NS方程的奇点
( U/ M6 G, ]$ o! J3 v; {) K) tNS方程的数学问题与两位著名的法国数学家有关(图4),泊松和拉普拉斯。3 |, J% D2 W7 r+ X% ]% y5 M
NS方程可以写为泊松方程的形式,Nabla^2 u(x,y,z)=Fx(x,y,z,t),这里是针对不可压缩流体的三维非定常流动。如果源项为零,则泊松方程就变为Laplace方程。对于NS方程来说,对平面Poiseuille层流流动,为了问题的适定性(well-posedness),必须定义源项Fx(x,y,z,t)不为零(这样也就是Laplace算子不为零,实际上是小于零)。$ Q0 l: e/ L0 H; i
在时间起始后,在扰动作用下,如果流场里存在Laplace算子为零的点,这个点就成为了泊松方程的奇点。  B  ~. W3 ^1 u5 p4 m$ R
研究从层流,到转捩流动,到湍流。我们发现在转捩流动中,流场中存在Laplace算子为零的点(在拐点附近),此点的变量值跑出了原先的定义域之外,此即奇点。所以研究结论是对转捩流动和湍流,不存在NS方程的全局域上的光滑解。
2 O3 {) x% Z/ Y" c- n& k为什么Laplace算子为零的点就成了泊松方程的奇点呢?这是由NS方程的特性和平面Poiseuille流动的边界条件所决定的。对平面Poiseuille层流流动,我们已经定义了Laplace算子不为零。在转捩流动中,在扰动作用下(此时仍是层流),流场里突然出现了变异的点,Laplace算子为零了。那么这个点就成了没有定义的点,成了奇点了,它跑到了原来的定义域之外去了 [3, 6]9 q: E* @0 c+ Y$ y& f& d. b6 M* I' C( l
Laplace算子为零时泊松方程的解是什么呢?对两个平行平板间的压力驱动流动,在边界无滑移条件下, 是速度u=0。因此,NS方程奇点的意义,已经非常明确了,流场出现了“洞”,速度分布出现了间断。在实际的流体的流动中,由于流体粘性,此点速度不是严格地u=0,而是表现为速度负的spike。比如来流速度为u=1.0,在奇点位置,速度突变发生后为大约u=0.3~0.7,这个结果已经得到了所有获得的大量实验数据和DNS模拟结果的验证(图5)。, [: `% Z* L( {5 z- H! M: ]

4 P1 e" T( e! U: m3 R- @) u( Y* @                               
登录/注册后可看大图
& T" p/ ]7 I. _  N! a" g/ [
图 5 流场中奇点产生,理论预测与实验结果对比。上面是特殊位置点(拐点附近)的瞬时速度分布。下面是上游扰动的信号记录。(a)理论预测结果(Dou 2021, 2022)。(b)实验测量结果(日本,西岗通男等1981)。( S: U  N* ^6 C( g( [- W1 c4 J0 X) Z7 A
(五)数学奇点的类似概念的比较容易理解的例子
* Y# d2 ^/ n1 t6 O9 W(1)举一个例子,一个栏里,圈了100只山羊。记住,这都是山羊。突然一天,养羊的人发现其中有一只羊变异了,不是山羊了,变成绵羊了(可能吃了什么食物或药物,可以理解为物理学上的扰动),那么这只羊就是奇点。它跑出了原来的定义域(100只山羊),跑到定义域外边去了,成为了没有定义的点。2 p' L! g/ B' V2 ^8 J4 q" m9 [
(2)再举一个例子,有一缸水,定义它的组分为q(x,y,z)=1,在定义域内,函数q处处光滑连续,处处可以求导。经过日晒风吹(这起到了扰动的作用),突然有一天,水里面出现了一个气泡,这样水的组分q就不全部是1了。里面有一点,组分变成了q(x,y,z)=0。就这样,这一点就变成了奇点。这一点跑出了原来的定义域,成为了没有定义的点,此处水的组分函数q已不再连续,因此也不是处处可以求导。如果用数值方法来求解,函数q(x,y,z)就没有连续的光滑解了。+ U7 I6 _% \; \. [- X
(六)对热传导问题,Laplace算子为零的点不是泊松方程的奇点
* P/ G, V5 r+ H/ x7 V论文审稿人(第4位)提出,“Laplace算子为零的点是泊松方程的奇点”是错误的,没有科学依据。作者进行了回答,这个结论是有条件的是不是奇点取决于对具体物理问题的定义,还有边界条件对不同的物理问题,结果是不同的。对平面Poiseuille流动是奇点,而对同样的泊松方程,同样的物理几何,对热传导问题就不是奇点。
, k9 \3 x; r& d& {7 ^. J( x( ~对热传导问题的控制方程可以写为泊松方程的形式,Nabla^2 T(x,y,z)=S(x,y,z,t),这里T是温度。如果源项S(x,y,z,t)为零,则泊松方程就变为Laplace方程。给定两个平行平板间的流体,对于热传导方程来说,对源项的数值大小没有限制,S(x,y,z,t)可以大于零、小于零或者等于零,方程都是适定的,都有物理意义;在这些情况下,解的结果都符合物理学原理。
1 V  S& _6 Q6 z* q! H即使温度场初始源项不为零,在时间起始后,在源项随时间变化或扰动作用下,如果温度场里出现Laplace算子为零的点,这仍然在原来的定义域内,泊松方程仍有意义,Laplace为零的点不是泊松方程的奇点。
' Y0 v, S, i$ K0 [另外,对平面Couette流动和平板上的边界层流动,Laplace算子为零的点也不是泊松方程(NS方程)的奇点,这是由各自的边界条件所决定的。这里不再讲解了,可参考文献 [1-3]。
  Q. g4 S3 T6 z3 b对于偏微分方程写成泊松方程的形式,如果定义域内出现了Laplace为零的点,这个点是不是奇点,取决于对所给的问题的物理定义,以及边界条件。  @. T9 V& }4 p) q
(七)流场中的奇点(Laplace算子为零的点)是怎么产生的
+ ?3 H5 Y) M! T* w9 W最后,对·平面·Poiseuille流动,在层流到湍流的转捩过程中,流场中的奇点(Laplace算子为零的点)是怎么产生的呢?2 l4 t% R9 h! W9 X! \
奇点产生是非线性项随时间发展与粘性项相互作用的结果。具体地说是扰动与机械能的梯度相互作用的结果。它们的相互作用,导致了速度剖面发生畸变,出现了奇点。在奇点处,流体粒子消耗的机械能为零(Dou 2011, 2021, 2022,有推导过程),从而此点流体速度停止,理论上瞬时u=0 [1-5]。实际上是,速度分布出现负的spike。注意,一个扰动周期内,只有一个瞬时发生u=0 (图5)。
: I8 x% `4 `" V导致奇点出现的条件是基本流场的机械能梯度分布,已经基本接近奇点出现 [7], 然后扰动起的作用是促使或者刺激瞬时的机械能分布,出现奇点。就像一个人站在河边上,风一吹,他就掉到河里去了。如果你站的地方离河边还有几十米远,扰动是不会导致掉到河里的。所以对牛顿流体圆管流动,Re很小时(比如 Re < 1750 ~ 2000),扰动怎么大,也不会导致湍流。
7 h) z4 f& `$ |: X, w; w+ TDou(2021,2022)证明显示,导致湍流发生的泊松方程的奇点是在非定常流动中才能产生的,定常流动中,不能产生这类奇点,所以定常流动中不能产生湍流。因此,大家看到,雷诺平均方程方法(RANS)舍去了湍流的太多信息。
  S  f9 g9 W4 x7 e3 X  ]# @5 y例如锥形扩压器内的定常分离流动,在逆压梯度作用下,产生边界层分离,速度剖面存在拐点(图6,沿着S-I线,在此线上,因为Laplace=0,所以x方向速度分量u=0),此线上的点处处是Laplace算子为零的点,处处u=0。拐点此处速度是连续的,光滑可导的,不是奇点,是有定义的点。这个流动里,只会产生分离,不会产生湍流。
( V: R+ A( O  t, E那么这个流动里,如果对以施加非定常的扰动影响,奇点会产生吗?产生时奇点会在何处?奇点如果产生,不会在图中的拐点之处,这个拐点与槽道流动或者圆管流动里的拐点是不一样的,因为它不会引起速度的间断(因分布光滑)。奇点出现的位置应该是,此处平均速度较大,在扰动作用下,会出现拐点。这样才会出现速度间断,产生负的spike,引起速度涨落。
' q% v( v2 V, Y6 w% ?

1 W' @7 V6 N5 _. i3 B% ^                               
登录/注册后可看大图

$ H( |* I  D: l7 j4 V. O# \& x( J
图 6 逆压梯度下的边界层分离流动的流场流线分布

: _, F& f6 H  l; G( ](八)泊松方程方法的论文免费下载
* e! E4 Y4 r) a9 [+ A泊松方程方法确定奇点(Dou 2022)的论文是开源的,可以免费下载:Dou, H.-S., No existence and smoothness of solution of the Navier-Stokes equation, Entropy, 2022, 24, 339. https://doi.org/10.3390/e24030339泊松方程方法证明奇点,是基于数学概念。这里期刊网站公开了4位匿名审稿人的评审意见,作者的答复,共2轮,可以阅读、下载。评审意见是否公开,编辑需要征求作者意见,作者选择了公开,也让读者了解评审专家是什么看法。注意:这个期刊不允许作者推荐审稿人,所以所有匿名审稿人都是作者不认识的人。作者也十分感谢所有的评审专家对论文提出的正面和反面意见,这些评审意见让作者学习了很多,同时提高了论文质量,也有益于读者。
/ }8 @% k5 M0 `5 R. i. i如果读者也去读一下这4位评审专家的评审意见,包括肯定意见和反对意见,一定会收益匪浅。* k5 U* e! y0 E4 u, B# Z
参考文献
3 K% a, _( w6 \2 R
' |6 r2 R: J) O1.Dou, H.-S., Origin of Turbulence-Energy Gradient Theory, 2022, Springer. https://link.springer.com/book/10.1007/978-981-19-0087-7 (全书下载地址).
) t% [5 Q6 e; w. y- X4 d8 f2. Dou, H.-S., Singularity of Navier-Stokes equations leading to turbulence, Adv. Appl. Math. Mech., 13(3), 2021, 527-553. https://doi.org/10.4208/aamm.OA-2020-0063 (AAMM);
3 V2 a5 j; N- n: R  Mhttps://arxiv.org/abs/1805.12053v10 (Arxiv) (通过物理学推导出奇点
! A! M9 o7 r2 e4 q3. Dou, H.-S., No existence and smoothness of solution of the Navier-Stokes equation, Entropy, 2022, 24, 339. https://doi.org/10.3390/e24030339 通过数学推导出奇点, ^. z( o, a1 G9 e' @
4.窦华书教授在纳维-斯托克斯方程问题上取得新进展,浙江理工大学官网新闻, 2021。4 ~( h5 p' d' `  U
; u& o, E8 u' ~
https://news.zstu.edu.cn/info/1033/41169.htm (此学校网页白天能打开,晚上打不开), u. U) O9 E% o0 v) N; \
或者 https://mp.weixin.qq.com/s/8letL1Z5XiFf-6Lw4GLe5Q   或者   https://mp.weixin.qq.com/s/mnkwE67OPbGwHccqrePRrQ
) r$ Y. U5 {  A( A' J5. 窦华书,一个力学公理的建立揭开了湍流的秘密https://blog.sciencenet.cn/blog-3057857-1383011.html ! c) p+ ~! f  T) A8 D

6 s! Y% z, \+ r2 j$ z6. 窦华书,千禧年大奖难题之一纳维-斯托克斯方程的解的存在性与光滑性的证明, 科学网博文,2022年5月。
) F' o. I1 \* l3 y

7 o- r0 @9 l8 phttps://blog.sciencenet.cn/home.php?mod=space&uid=3057857&do=blog&id=13374521 o$ m2 F9 F* V1 b
7. 窦华书,我是怎样创立能量梯度理论的?
' f1 }- |& A( V

% i# s- G8 o$ S4 r4 Uhttps://mp.weixin.qq.com/s/tujupDNxbClLCFXGBKJVIA
; i+ z/ ^9 T1 M) R1 w9 f3 Z  i$ W2 k
' a8 d. n) P" Q* `4 M( x
. M0 [5 r( ?) x8 K7 P% d. H0 R                    ; m2 z' d. x: k. d
0 Y8 o. ^) q6 o2 x8 q
                                        转载本文请联系原作者获取授权,同时请注明本文来自窦华书科学网博客。
回复

举报 使用道具

相关帖子

全部回帖
暂无回帖,快来参与回复吧
懒得打字?点击右侧快捷回复 【吾爱海洋论坛发文有奖】
您需要登录后才可以回帖 登录 | 立即注册
三观道人
活跃在3 天前
快速回复 返回顶部 返回列表