|
2 l. U2 m# {6 A1 \9 q. ~) ^5 ?/ b: g' r
本文意在介绍发生在海洋中的动力过程的方程组,阅读本文需要基本的牛顿力学知识即可 & J1 Z2 C) e1 Y6 Y) O
动量方程E1-E3 - z8 T2 Z/ g6 g0 R, T, ]6 c
E1:∂u/∂t+u∂u/∂x+v∂u/∂y+w∂u/∂z=−1/ρ⋅∂p/∂x+fv+υΔu+∂(AH∂u/∂x)/∂x+∂(AH∂u/∂y)/∂y+∂(Az∂u/∂z)/∂z+FxE1:\partial u/\partial t+u\partial u/\partial x+v\partial u/\partial y+w\partial u/\partial z=-1/\rho\cdot\partial p/\partial x+fv+\upsilon\Delta u+\partial (A_H \partial u/\partial x)/\partial x+\partial (A_H \partial u/\partial y)/\partial y+\partial (A_z \partial u/\partial z)/\partial z+F_x
7 |/ t* w; t3 s9 v E2:∂v/∂t+u∂v/∂x+v∂v/∂y+w∂v/∂z=−1/ρ⋅∂p/∂y−fu+υΔv+∂(AH∂v/∂x)/∂x+∂(AH∂v/∂y)/∂y+∂(Az∂v/∂z)/∂z+FyE2:\partial v/\partial t+u\partial v/\partial x+v\partial v/\partial y+w\partial v/\partial z=-1/\rho\cdot\partial p/\partial y-fu+\upsilon\Delta v+\partial (A_H \partial v/\partial x)/\partial x+\partial (A_H \partial v/\partial y)/\partial y+\partial (A_z \partial v/\partial z)/\partial z+F_y , S/ M. R# s% p' ?3 I7 \' Q; x
E3:∂w/∂t+u∂w/∂x+v∂w/∂y+w∂w/∂z=g−1/ρ⋅∂p/∂z+υΔw+∂(AH∂w/∂x)/∂x+∂(AH∂w/∂y)/∂y+∂(Az∂w/∂z)/∂z+FzE3:\partial w/\partial t+u\partial w/\partial x+v\partial w/\partial y+w\partial w/\partial z=g-1/\rho\cdot\partial p/\partial z+\upsilon\Delta w+\partial (A_H \partial w/\partial x)/\partial x+\partial (A_H \partial w/\partial y)/\partial y+\partial (A_z \partial w/\partial z)/\partial z+F_z - y3 S; G6 c' d& D7 m# E
上述三个方程分别是动量方程的x、y、z分量形式
# c+ [% ]; ~: \7 H 也可以写成矢量形式: 9 R1 O5 X; p8 o( Y2 b u
dV¯/dt=g−1/ρ⋅(hamilton)P+Ω×V¯+υΔ(hamilton)barV+Ft+Frd\bar{V}/dt=g-1/\rho\cdot(hamilton)P+\Omega \times \bar{V}+\upsilon\Delta(hamilton)bar{V}+F_t+F_r
, [1 G* d& n+ ^, R+ m+ P6 W 以下我将逐个解释各项含义
) ?! W) z J% ^7 B$ h7 v; S 等式左边为速度对时间的全导数,以E1为例,u为速度的x方向分量,u是(x,y,z,t)的函数 $ d6 z- `7 ` o/ w6 V
等式右边包括重力、压强梯度力、科氏力、黏性力、湍应力、天体引潮力
. e+ q5 b& S! m% \2 P 重力不用过多分析,仅存在于z方向
/ s5 K; Z6 E% d 压强梯度力:x方向为例, ' m1 r Y9 w" \* y4 t! B: X
a=F/m=(p−(p+δp))⋅δyδz/ρ⋅δxδyδz=−1/ρ⋅∂p/∂xa=F/m=(p-(p+\delta p))\cdot\delta y\delta z/\rho\cdot \delta x\delta y\delta z=-1/\rho\cdot \partial p/\partial x , x+ g* H* p4 l6 o9 w
科氏力: F=−2Ω×VF=-2\Omega\times V
( g5 X+ b! S0 c# I8 I" i" z8 s( Y1 k Ω=2π/day=7.27÷105m/s\Omega=2\pi/day =7.27\div10^5 m/s * O4 F7 }2 p6 F
Ω(0,Ωcosφ,Ωsinφ)\Omega (0,\Omega cos\varphi,\Omega sin\varphi)
+ Z( G5 v% ]3 O! A/ g2 N φ=latitude\varphi=latitude " |* D! Q8 f8 ]$ Z
近似计算 * P% D2 C4 M$ e! I1 U4 `
Fx=fvF_x=fv
' g+ @; C6 e8 o+ E% G! Q Fy=−fuF_y=-fu : }$ ~; k: c' K0 f
ff 为科氏系数 f=2Ωsinφf=2\Omega sin\varphi
- y% @% ~" F6 y0 a. A, }7 O/ l/ A 黏性力为黏合系数与梯度的乘积,湍应力由湍流的脉冲造成的,天体引潮力过于复杂(与日月等天体有关,暂不介绍) 6 @3 Y$ C# [; H
E4 连续性方程 " i$ K# }- _9 y
∂u/∂x+∂v/∂y+∂w/∂z=0\partial u/\partial x+\partial v/\partial y+\partial w/\partial z=0 , Y# m% [$ i; M& L) T t
Eularian观点:定点处观察经过的流体质量变化 - _* T1 A! p4 B. P
∂ρ/∂t+(∂(ρu)∂x+∂(ρv)/∂y+∂(ρw)/∂z=0\partial \rho/\partial t+(\partial(\rho u)\partial x+\partial(\rho v)/\partial y+\partial (\rho w)/\partial z=0
; G' }/ c/ C( @" y, {* f, X 转化为Lagrange观点:跟踪流体微团 8 K! H% C9 L; W, z
1/ρDρ/Dt+(∂u/∂x+∂v/∂y+∂w/∂z)=01/\rho D\rho /Dt +(\partial u/\partial x+\partial v/\partial y+\partial w/\partial z)=0 0 }# ?" p; h( L
E5-E6盐守恒、热守恒 ! F6 l( L9 G+ p: H) o; J6 M
E7 状态方程 ! }5 Q, _+ g% Y/ y( _
∂s/∂t+u∂s/∂x+v∂s/∂y+w∂s/∂z=kDΔs+∂(kH∂s/∂x)/∂x+∂(kH∂s/∂y)/∂y+∂(kH∂s/∂z)/∂z\partial s/\partial t+u\partial s/\partial x+v\partial s/\partial y+w\partial s/\partial z=k_D\Delta s+\partial(k_H \partial s/ \partial x)/\partial x+\partial(k_H \partial s/ \partial y)/\partial y+\partial(k_H \partial s/ \partial z)/\partial z
$ K% `+ @. _# B$ [- L9 K7 E7 K: L
& q" M% Z0 C% Q8 b V5 o4 d' }9 r3 l
, f3 Q/ w) y) f" m! h% j0 |0 B( e9 v
7 j! K5 [! ~; F8 A& E ~: p n |