|
0 v+ g9 y0 f- Q( g
本文意在介绍发生在海洋中的动力过程的方程组,阅读本文需要基本的牛顿力学知识即可
/ L7 J( m/ i# P" o, c 动量方程E1-E3 1 K9 V, v+ ^8 F3 Z; [* K; t9 E( J
E1:∂u/∂t+u∂u/∂x+v∂u/∂y+w∂u/∂z=−1/ρ⋅∂p/∂x+fv+υΔu+∂(AH∂u/∂x)/∂x+∂(AH∂u/∂y)/∂y+∂(Az∂u/∂z)/∂z+FxE1:\partial u/\partial t+u\partial u/\partial x+v\partial u/\partial y+w\partial u/\partial z=-1/\rho\cdot\partial p/\partial x+fv+\upsilon\Delta u+\partial (A_H \partial u/\partial x)/\partial x+\partial (A_H \partial u/\partial y)/\partial y+\partial (A_z \partial u/\partial z)/\partial z+F_x
6 l0 k2 m. @# x ^, b: {7 c E2:∂v/∂t+u∂v/∂x+v∂v/∂y+w∂v/∂z=−1/ρ⋅∂p/∂y−fu+υΔv+∂(AH∂v/∂x)/∂x+∂(AH∂v/∂y)/∂y+∂(Az∂v/∂z)/∂z+FyE2:\partial v/\partial t+u\partial v/\partial x+v\partial v/\partial y+w\partial v/\partial z=-1/\rho\cdot\partial p/\partial y-fu+\upsilon\Delta v+\partial (A_H \partial v/\partial x)/\partial x+\partial (A_H \partial v/\partial y)/\partial y+\partial (A_z \partial v/\partial z)/\partial z+F_y # ]& ^8 C1 ]: ?! W9 v
E3:∂w/∂t+u∂w/∂x+v∂w/∂y+w∂w/∂z=g−1/ρ⋅∂p/∂z+υΔw+∂(AH∂w/∂x)/∂x+∂(AH∂w/∂y)/∂y+∂(Az∂w/∂z)/∂z+FzE3:\partial w/\partial t+u\partial w/\partial x+v\partial w/\partial y+w\partial w/\partial z=g-1/\rho\cdot\partial p/\partial z+\upsilon\Delta w+\partial (A_H \partial w/\partial x)/\partial x+\partial (A_H \partial w/\partial y)/\partial y+\partial (A_z \partial w/\partial z)/\partial z+F_z ! z- ^# o+ E9 ?; W
上述三个方程分别是动量方程的x、y、z分量形式
% A4 N5 P8 `9 F% V5 w; X7 k 也可以写成矢量形式: " f* C: s& i; D7 i, N) U
dV¯/dt=g−1/ρ⋅(hamilton)P+Ω×V¯+υΔ(hamilton)barV+Ft+Frd\bar{V}/dt=g-1/\rho\cdot(hamilton)P+\Omega \times \bar{V}+\upsilon\Delta(hamilton)bar{V}+F_t+F_r
8 u- w6 d1 q% t R* f# }# u0 e 以下我将逐个解释各项含义
7 H" I+ o( C U3 z4 s3 ]. }4 H3 y7 H 等式左边为速度对时间的全导数,以E1为例,u为速度的x方向分量,u是(x,y,z,t)的函数
# {$ T/ L, _, V0 W9 ]" ^; U( e( {3 F 等式右边包括重力、压强梯度力、科氏力、黏性力、湍应力、天体引潮力 & _" }9 l7 ~0 y$ l
重力不用过多分析,仅存在于z方向 . e( R2 S- X) W; w; i. {# K3 y
压强梯度力:x方向为例, $ ? ?( W/ y9 h! M
a=F/m=(p−(p+δp))⋅δyδz/ρ⋅δxδyδz=−1/ρ⋅∂p/∂xa=F/m=(p-(p+\delta p))\cdot\delta y\delta z/\rho\cdot \delta x\delta y\delta z=-1/\rho\cdot \partial p/\partial x
A2 v; Q, w# f) l 科氏力: F=−2Ω×VF=-2\Omega\times V
. ~7 k3 P+ e9 C3 }0 [3 R Ω=2π/day=7.27÷105m/s\Omega=2\pi/day =7.27\div10^5 m/s
$ ~" M7 N* c% n; C' S- p1 S Ω(0,Ωcosφ,Ωsinφ)\Omega (0,\Omega cos\varphi,\Omega sin\varphi) 3 A1 L1 x% A* V9 A: |" J
φ=latitude\varphi=latitude
1 c( ]5 |' j/ v. y4 v5 z 近似计算 % N. _# f3 X' @5 Q5 k) P7 H
Fx=fvF_x=fv
0 O% T2 N9 c8 D# Z5 j Fy=−fuF_y=-fu
4 b* c. _& w! ~2 m: l- i ff 为科氏系数 f=2Ωsinφf=2\Omega sin\varphi
8 R; L' D9 n; `: ] 黏性力为黏合系数与梯度的乘积,湍应力由湍流的脉冲造成的,天体引潮力过于复杂(与日月等天体有关,暂不介绍) 6 Z S$ Y% K, [( Y2 Q4 T& d
E4 连续性方程 , S# o. B+ w7 B/ t
∂u/∂x+∂v/∂y+∂w/∂z=0\partial u/\partial x+\partial v/\partial y+\partial w/\partial z=0 & A% u& c$ l7 R5 r" R
Eularian观点:定点处观察经过的流体质量变化
4 [. I0 h1 o. j; K. w ∂ρ/∂t+(∂(ρu)∂x+∂(ρv)/∂y+∂(ρw)/∂z=0\partial \rho/\partial t+(\partial(\rho u)\partial x+\partial(\rho v)/\partial y+\partial (\rho w)/\partial z=0 , U6 r/ J$ D' c* r+ ^$ ^ n9 N
转化为Lagrange观点:跟踪流体微团 . X' q ~+ O7 s
1/ρDρ/Dt+(∂u/∂x+∂v/∂y+∂w/∂z)=01/\rho D\rho /Dt +(\partial u/\partial x+\partial v/\partial y+\partial w/\partial z)=0
8 N4 |8 v+ {1 a4 ]% {& Z' S6 h5 O4 l E5-E6盐守恒、热守恒
4 S8 B% P8 ]/ ]0 e, j* t E7 状态方程 2 E! B. o* H! I4 h" R0 T
∂s/∂t+u∂s/∂x+v∂s/∂y+w∂s/∂z=kDΔs+∂(kH∂s/∂x)/∂x+∂(kH∂s/∂y)/∂y+∂(kH∂s/∂z)/∂z\partial s/\partial t+u\partial s/\partial x+v\partial s/\partial y+w\partial s/\partial z=k_D\Delta s+\partial(k_H \partial s/ \partial x)/\partial x+\partial(k_H \partial s/ \partial y)/\partial y+\partial(k_H \partial s/ \partial z)/\partial z 5 M9 e9 A4 q$ J) t. x
- K7 x0 i+ K* G/ O. ~" N! S3 e5 g
7 F7 f! [- o* ~) I! P
+ y) g: a/ \+ F2 ]3 Z
, E5 W; U" D6 x9 X |