; v7 t) G( B; w, a4 p, u+ C
最后的电子光学组件(DOMs)被放入组成冰立方阵列的一个冰洞里,冰立方是全球最大的中微子望远镜,它建在美国阿蒙森·史考特南极站附近的南极冻原下。 6 C6 i" B0 q, F$ T* e
. O# x3 i4 l8 s% o
! m1 V, _9 K% w" E4 N" F 4 H* G* T( z: i# ^2 C' |3 a1 q5 J' o
冰立方阵列由放进很深的冰洞里的众多传感器串组成。靠近冰面的IceTop由两层探测器组成。图的右下角绘制的巴黎埃菲尔铁塔的图像,是用来与这个探测器进行对比,让它的大小更加一目了然。
6 C0 Z# ?+ ?) w. `9 a
4 R7 Q Q* [( ?# l( t) W# a
( [8 l1 X8 m) ?4 p* ~+ e R
6 `( B. b# d* v! e% P斯德哥尔摩大学的马提亚斯·丹宁格尔正在协助安装最后的电子光学组件
; H, i! R7 [( t# L3 K' O * ^4 |, i1 S* |* k) Y
! K) |5 F5 A! G7 i7 S' w; ~4 s( z
1 g1 u! _. t6 f( R1 r冰立方中微子天文台的建设工作已经完成
4 b- ~8 M! t M' o8 ]/ g, X" f & _+ S) @& @) h7 i* S
( W, u+ T S) @8 p: ^: x 12月27日,在南极洲8000英尺(2.44公里)深的冰层下,巨型望远镜——冰立方中微子望远镜的建设工作已经完成。
9 a; X a% ]9 y. V; c# |% e 冰立方中微子天文台是建在南极的一个巨型望远镜,它的目的是发现以光速穿过地球的中微子,这是一种令人难以捉摸的亚原子粒子。尽管科学家利用冰立方收集数据的时间已经长达数年,但是它的建设工作直到上周末才结束。人们对中微子知之甚少,但是认为它们携带着有关我们的星系和神秘黑洞诞生的信息。1 y. d. B- F9 m; v
物理学家认为,中微子在猛烈的宇宙事件中诞生,例如位于宇宙边缘的遥远星系相撞或黑洞的产物。这些神秘的高能粒子能在太空里穿行几十亿光年,而不会被磁场和原子吸收或偏转运行方向。通过它们,科学家能找到一些有关宇宙最基本问题的答案。不过要实现这个目的,首先你要发现中微子。为此,科学家正在利用冰观测中微子撞击(组成水冰分子的)原子的罕见场面。
3 ~! n' p7 N* i1 L4 n9 ~7 Z 这个巨大的望远镜建在南极深达8000英尺(2.44公里)的冰原下。整个项目耗资2.79亿美元,美国国家科学基金会为其提供了2.42亿美元资助。建设工作的最后阶段是为5160个光学传感器钻86个孔,现在这些传感器已经安装完毕,成为主探测器的组成部分。中微子与原子相撞产生的粒子名叫μ介子,生成的蓝色光束被称作“切伦科夫辐射”。由于南极冰的透明度极高,冰立方的光学传感器能发现这种蓝光。
% ?& z& L6 N" ]. S. w" c[NextPage]
8 e' z3 d& |0 j P# G- M0 ?1 O% G8 v# d( T& O
& N( M: I; M! h* y; V5 D
人们准备安装最后的电子光学组件,它上面有全队所有成员的签名。
4 v& S! y: ` J( x
|" {' O0 i; X* M2 A- y% f8 h7 v+ `8 ?- u: e0 u/ v
# Z: o% Q' B& p这是一束“切伦科夫光束”穿过冰立方望远镜的艺术概念图 8 ] D6 J# V0 e, q
/ n) t" J/ ?+ @; a' X* j
, d5 V( B- \* \: V
$ q K$ v5 N, i4 \" r0 f3 B 冰立方将会把南极μ介子及中微子探测器列阵(黄色圆柱体)团团围住,后者是一个更小的中微子探测器。彩色斑点显示的是通过冰立方阵列的中微子的路径,这是由电子光学组件发现的。 1 U3 A* r; d( s* @* Y5 c
: B @& C3 G$ [+ ~- t1 ], K
+ v3 } p8 |" l! \' ?: K
f4 v U" |. F9 r/ |& { 美国阿蒙森·史考特南极站附近的南极冻原上的冰立方实验室。过去5年科学家一直在建这个望远镜,直到最近它才竣工 0 a) a& n9 s0 Q6 D( A
* a+ J( u) h& d# S9 q$ t$ t
. \9 E, \1 o0 @. G* \$ h& k" b' n 科学家通过在亚原子相撞后进行的试验,可以追踪到中微子的运行方向、查找到它的起源,看一看它是由黑洞还是由撞击星系产生的。然而,这一过程比探测μ介子更加复杂。因为每个μ介子都是由一个宇宙中微子产生,而位于探测器上方大气里的宇宙射线可以生成一百多万个中微子。为了避免这种干扰,冰立方的传感器直接瞄准下方——经地心指向北极天空,用来探测穿过地球的中微子。
" Q/ Q0 R* {) w k 由于中微子是目前已知的唯一一种可以畅通无阻地穿过物质的粒子,故冰立方和南极μ介子及中微子探测器列阵(AMANDA)把地球当做过滤器,以便选出中微子与原子相撞产生的μ介子。令人捉摸不透的中微子的性质,还决定了冰立方的建设位置。中微子望远镜的透明度必须很高,以便分布很广的传感器阵列可以发现撞击产生的光,而且这个环境必须足够黑,以防自然光产生干扰。除此以外,它还必须深埋地下,以避免南半球的宇宙射线对其产生干扰。南极冰符合所有这些条件。2 T+ _0 M$ @! Z! |1 c
天文台的大小(边长一公里的立方体冰块)非常重要,因为这可增加中微子与原子相撞的机会,大大提高观测成功率。另外,南极冰是用来观测这种罕见事件的完美选择。全球大部分冰里都含有气泡或其他杂质,这会使观察结果产生误差。而南极冰基本上完全是由水冰组成的巨大冰川,这意味着它包含更多原子,因此会大大增加中微子撞击的机会。圆形探测器被串成串,放入用热水钻开凿出来的冰洞里,钻每个冰洞需要融冰多达20万加仑。每根电缆线上有60个传感器,86串这样的传感器串组成冰立方的主探测器。 |