收藏本站 劰载中...网站公告 | 吾爱海洋论坛交流QQ群:835383472

海洋观测技术(定义、分类、技术分析及实例介绍) - 海洋观测通讯技术

[复制链接]
+ q- ?! `4 g1 ^* a$ V

! n3 S' E ]3 q7 N2 }8 L( D

海洋观测,是一切海洋活动的开始,是透明海洋、智慧海洋和海洋信息化的重要基础。

. f" G8 C* F3 L2 u8 p- \2 G

海洋中从海面到海底,温度是如何分布的?长江口的近海海域的海底,溶解氧浓度有多高?印度洋的盐度和大西洋的盐度相比较,哪个更高?太平洋海底洋中脊周边生活着的虾类,它的生活规律是怎样的?这些问题的回答,就必须要通过海洋观测技术,获得海洋中的数据来解决。

9 G8 P' [3 O) a" l4 K$ P$ |/ b

提要:此文从定义开始介绍海洋观测技术,指出了海洋观测技术的重要意义,提出了海洋观测的数学表达。同时进行了海洋观测技术的分类和不同观测技术的性能比较分析,并阐述了间接观测技术和直接观测技术的组成和应用领域。最后通过实例,进一步说明了海洋观测技术的应用。

8 t; R1 h O# {- V# K% w3 m

01

2 ]/ c5 n: Y$ z/ J: a" e" O

 何为海洋观测技术

p3 c/ q5 b. A, h7 O& u5 ]1 T

海洋观测,是通过技术手段获取海洋或海底特定地区的时间序列数据。海洋观测的任务有

: X- g) n: { T

1)观察未知海洋世界

: }# a! Q5 F; U! ~4 W" X6 V$ m

2)监测评估人为作业对海洋带来的影响

) f: S6 M/ e! m* y, M

3)观测海洋特定地区

: n' B. S4 P' g6 _

4)监控海洋,保护国家安全,等等

d+ E, v8 C' M2 k. u$ C

海洋观测,是一切海洋活动的开始,是透明海洋、智慧海洋和海洋信息化的重要基础。顾名思义,海洋观测技术,是获取海洋或海底特定地区的时间序列数据的技术。海洋观测技术的实现,通常是利用传感器及其平台技术,或通过多次采样分析,对海洋环境各量在一段时间内的感知和认识,而针对的对象通常是动态变化的。

7 K- L0 H( t% f- C( W2 N

海洋观测的数学表达式为:

* q! O( `* T2 I. B2 A1 O" G, x

      Y(t) = F(X1,X2,X3,...,Xp,t)

' e8 C. e* U$ H* _. C

其中Y(t) 是观测值,X1,X2,X3,...,Xp表示为各种测量对象的值, t为时间。   

" f7 w' I( a1 d7 X- j+ F7 s

从数学表达式中可以看出,海洋观测得到的是一组时间序列数据,是随时间变化而变化的一组数据。因此,观测的对象是时变的,是动态的。当观测对象是不变的,譬如海底地质现象的观测,那么在这个式子中的时间t无意义了,这时,数学式子则变成:

" L4 e; x9 R- y6 m( W

Y = F(X1,X2,X3,...,Xp)

* Z& d, s0 g, @+ q$ q4 D8 {

这式子表达的是海洋探测。海洋探测是获得一组数据,与时间无关,故通常用于时不变对象的观测或者是资源探测、海底物体寻找等方面。

) o6 ]: i6 X4 [+ [8 e7 a

02

; C ~" [ J# K; P" H4 L) n

海洋观测技术分类

$ K: \& G) z! j) b, l$ `$ H& i

海洋观测技术的分类,主要可从这样三个维度来考虑:一是观测形式;二是观测方法;三是观测区域。重点是观测方法。

$ m8 i% t7 g9 z

海洋观测形式有固定式和移动式两种,可称为定点式海洋观测技术和移动式海洋观测技术。传感器挂在浮标上的观测、基于海底原位观测站的观测是定点观测,而利用水下滑翔机携带传感器遨游海上的,则属于移动观测。

' M# R k) B+ G0 c g' u

海洋观测方法的不同进行分类,可分为间接观测技术 (indirect observing)与直接观测技术(direct observing)两种。间接观测技术,通常是通过水面运载工具或潜水器,进行采样作业或离线观测作业,把样品或数据取回到实验室,再进行分析处理,获得观测结果。直接观测技术,则直面对象,通过传感器件,加之信号传输通道,在线地实时获得海洋观测数据结果。

& B; t r& z& M" H6 r" Y

海底间接观测主要指采集海水、(微)生物和海底物质样品,并在实验室进行样品分析从而实现观测的一种手段。这种手段通过样品的获得并进行对一些物理化学量的测量数据分析,获得目标结果。具体实现方法如拖网、CTD、多管、箱式、抓斗、热流计、大洋钻探计划等。图1是美国阿尔文(Alvin)载人深潜器在热液地区进行热液水体采样的照片。

! O6 T9 K( B! ~: `- @5 |

图1    热液采样器在东太平洋隆起地区热液口进行采样作业

+ v. q" \ M f6 P( R; f

有一些原位观测系统,把观测器放在海底观测对象附近,对观测对象进行不间断地观测与记录,同时把数据存放在自容式存贮器中。间隔一段时间后取回实验室进行数据分析,获得过去一段时间内的观测结果。这种方式尽管实时性较差,但非常实用且经济。原位观测,英文称为in-situ observing,是特别强调海底某一具体位置上的观测,对海洋技术是一种很大的考验。在海底放置海底观测器,进行长期观测,并将数据采入随之带入海底的数据采集系统。系统回收后,在实验室中将数据导入计算机中再进行分析。这样的方式,也可称为海底原位观测站,是间接观测技术的一种重要形式。图2 所示是美国科学家对海底热液地区所实施的一项原位观测活动。

9 \$ ]3 V# \5 W Z

图2    东太平洋隆起洋脊地区的热液原位观测站

5 [5 q) i: W( c% b/ l* o9 T1 c- v5 |

海洋直接观测是把观测器直接放到观测对象的附近,研究人员在线实时获得观测数据。如水下遥控潜水器把水下摄像机带到观测对象旁边,将视频图像信号通过潜水器的光纤直接传到海面,可实现人类对海底各种科学现象的直接观测。建设海底观测网络,是把各种观测传感器连接在网络上,直接传到陆地,并通过internet传遍全球,帮助科学家实现对海底某一关注地区的长期、在线的直接观测。

: }6 |3 {$ s* Z4 b) `

海洋间接观测和海洋直接观测,最大的区别是在于有无用光电复合缆(有时只是具有通讯功能的缆绳)。2 O1 g6 ]" S7 m$ _) c7 Q( y

$ P% g1 z+ l2 K- h% S: x7 |7 x

用缆就意味着海洋观测信号可以做直接获取,可以做到在线、实时的观测。同时,如果是采用光电复合缆的话,还意味着电能的无限供给,也即观测时间的无限制,做到长期的观测。从观测方法的要点、特征、基本组成单元和载体(或平台)技术四个方面对海洋间接观测和直接观测进行归纳,可用表1来清楚地表示。

, W2 y9 J) i& ~5 Y p) K" o& h9 o B; @4 \

表1   海洋间接观测和海洋直接观测之归纳

9 |' @- c& ~6 [9 J- w % ` [" Y- V3 `

另一个分类的维度,是根据观测的区域不同进行分类。对海洋的观测,主要是对这样三个不同区域进行观测:海面、海水、海底。也就是说,将海洋观测技术分为海面观测技术、海洋水体观测技术(或称海中观测技术)和海底观测技术。对海面的观测,主要是开展海水与空气界面间关系的研究。这方面的工作,除了对海洋进行观测之外,还涉及到海洋表面的大气部分,如海面气温、风向、风速的观测。从技术手段上来看,可采用海洋遥感技术。对海洋水体的观测内容十分丰富,在物理上可对涌、浪、潮、流、温度、浊度、盐度等量的观测与数据采集;在化学上和生物上可对海洋中的化学和生化量的观测,对二氧化碳、pH、DO(溶解氧)、营养盐、叶绿素、重金属、蛋白质等含量的观测与分析等。对海底进行观测, ; D n! m8 t- H+ f0 F4 ~, w+ m% @0 h7 ^4 X9 A

& \; r! l0 B" g$ x* Y

是近几年来随着科学技术的不断发展和完善,特别是海洋技术的发展,涌现出来的“新生事物”。对海底开展物理、化学和生物上的观测之外,还可对地形地貌进行观测,对海底某一现象进行观测,以及在地球物理方面进行观测,如地震波的观测等。

" d0 o7 }, `& @9 Q * }$ h$ x6 C* N: u

海底是地球上人类最不熟知的区域之一。作为海洋组成的重要部分,海底观测历来是人类努力希望实现的一项工作。由于技术上的困难,使得这项工作远远不能满足科学研究发展的需求。除了要了解海底的海床构造、深度,更要了解海底的岩石与沉积物的物理化学组成等海底情况。特别是随着海底矿藏(海洋石油)、深海热液、天然气水合物等现象的发现,海底观测的内容更加丰富,也更加迫切。图3所示的是某一海底热液地区的生态系统,对这样的海底观测,就需要依托多方面的技术来开展。

]* q, e9 S, e+ `

图3  海底热液地区的生态系统

( A% {* t. F7 k( q( ?( k. {

近年来,国内外的一些科学家们提出了海底海洋的概念。认为在海床的底下,还有大量的水域。在这些水域中,也发现了丰富的生命现象,故被誉为深部生物圈。事实上,深海天然气水合物,也可以看作是海底海洋的另一种形式。如上所述,海洋的观测又增加了一项新的内容——海底海洋的观测。这方面的观测,需要对海底海洋的结构构造、岩石沉积物的物理化学组成以及海底海洋水体中的物理、化学及生化量的观测。

, _: m# n n- ~2 Q! h1 ]: |

03

, T# ]" o1 _7 L

海洋观测技术分析

7 p, R4 A+ ~0 G( q% f! P% t( h

通过采集样品,送到实验室进行分析,是十分传统而常用的手段。这种方法一直在大学里教授,并广泛用于当前的海洋科学的研究当中。由于出海采样耗时,且航次通常要持续一段时间,回到岸上再送到实验室分析获得数据,“间接”时间是比较长的,通常几天、几周甚至一年以上。当然,实验室分析仪器部分能够带到船上,这样当天就可以得到数据,“间接”时间大大减少。随着海洋技术的进步,直接或“准直接”获得数据的情况越来越多。当然,不同的观测方法,“间接程度”有别。例如采样或岸上实验室分析间接时间最长;水下滑翔机观测,间接时间可能数天;海洋卫星或有缆的海底观测网络可以在线获得实时的数据,也就是说是直接获得数据。图4显示了不同观测方法的“实时性”对比。

- b% i0 C6 X5 `8 Y% X& ]2 C6 j6 g6 d

图4   海洋观测实时性与成本

7 A0 X; a$ J- J$ E$ i

不同的观测手段,观测涉及范围也是相去甚远。譬如海洋卫星的观测范围很大,甚至可覆盖一个海区。而一个海底原位观测站,其观测范围只有传感器能及的很小范围。图5显示了不同观测技术的观测范围与成本的比较。当然,从观测精度来讲,海底原位观测站的观测精度,一般来讲要比海卫星要高许多。

# q5 }* X3 @+ R# P' n

图5   海洋观测范围与成本

) `; v% G8 L- x9 e3 L) ]

04

' d b0 A6 E2 v

 海洋观测技术实例介绍

1 M, f) b/ @" l2 U" O3 s

最后,让我们通过几张图片,来介绍一下不同的海洋观测技术的组成和性能。

$ {' p) t) P2 X- Y _5 M) b* V& L. W, r/ O4 G# @

图6   海洋漂流浮标的工作流程

3 k9 T0 [4 T8 g! U6 P

图6显示了海洋漂流浮标的工作流程。很多人都知道,世界各国共同实施了ARGO计划,在世界各大洋中布放了大量的漂流浮标,来开展对海洋的动力参数甚至生化参数的大范围观测。截止2017年3月,世界各大洋中正在工作的漂流浮标共有3936个。其中美国贡献量最大,布放了2210个浮标。英法德日澳等国积极参与了这项计划,我国也积极参与并布放了117个浮标,并在国家海洋局第二海洋研究所(杭州)设立了ARGO数据处理中心。从图6表示的漂流浮标工作流程中,我们可以看到,我们通常是8-10天之后通过卫星获得一批数据,随着浮标的漂流,我们可以获得一个海洋切面上的海洋动力参数,如确定深度下的温度、盐度甚至流速等等。这些数据,很好地支撑了海洋科学研究,海洋大气预报等工作。

2 h }8 k4 P! O6 _9 K

图7显示了一个海底原位观测站在海底热液地区工作的情景。这个原位观测站是用来观测热液烟囱的温度变化的,由浙江大学设计制作2 |& L7 o: O4 }

k* Z6 R+ {$ m5 {/ @0 v

。这个系统用一个不锈钢圆锥筒,里面正交分布三层热电偶,并配套设计自容式信号采集系统和电池仓,我们给这个系统一个俗称——高温帽。通过载人深潜器布放到2000多米的海底并搁置在热液口上端,15天之后再通过深潜器下潜回收高温帽,从而获得15天时间内的温度连续变化曲线。可见这是一个典型的间接观测系统。

9 P6 o0 T2 J5 n8 Q6 W : } r9 L* ?' D. _( p" O/ V$ p

图7   高温帽在热液口附近观测作业

* m% F) X. H) b0 }

图8是一个海底观测系统示意图。海底观测系统通过布置海底光电缆,连接海底的观测系统与岸基站。显而易见,这样的系统可以在线、实时地获得海底的实测数据。海底观测系统的关键部件是布放在海底的接驳盒,它承担着连接海上海底的重任,进行着海底的电能接驳与分配,信号的上接下联。海底观测站通常需要高压通电,光缆通信,布放时需要采用有缆无人遥控潜水器来操作,成本是非常高的。维护起来也十分不便。

2 a% v+ d' M5 M0 C7 y0 o& B

图8   海底观测系统

7 l+ Q2 _/ T" y9 F: N! K) i

采用无人自主式潜水器(AUV)搭载传感器进行观测,是一种传统的观测手段。然而AUV自带电池,工作时间颇短,需要常常回收到船上进行充电(同时下载数据),然后再放回大海工作,效率甚低。如果利用海底观测网络对AUV进行充电并下载数据,既可提高AUV的工作效率,又可解决海底观测网络观测范围有限的矛盾。因此,国内外科学家们正在致力于AUV+海底观测网络的观测系统研究。图9显示了海底观测网络与AUV“搭桥”的工作原理图,这是浙江大学近年来完成的一项工作,通过在海底观测网络和AUV之间设置“DOCK”系统,解决AUV与海底观测网络的电能/信号连接问题。; H( ~( {1 F3 p9 N% N% E

6 G% D9 D( |0 \# q* C( k

并在2017年5月12日,在中国南海海域成功实施了百米深度的AUV对接海底观测网络的试验工作。

0 k4 @& X2 b- a4 ^6 w E 3 M; p, y1 f1 w" s5 @! N( ^: {& W

图9   海底观测网络与AUV“搭桥”的DOCK系统

8 ]# U y8 c8 \& }' F

05

# J' T7 z5 _% N

结语

% F9 G% O+ n3 g% ?& g6 q

海洋观测技术在海洋科技领域中扮演着重要角色,它推动着海洋科学研究的进步和海洋各项事业的发展。海洋观测技术还有待于进一步的完善,在“深度”、“广度”、“精度”、“持续度”“经济度”等五个纬度上有很大的提升空间。发展海洋观测技术,海洋技术研究人员义不容辞。让我们共同努力,用先进的海洋技术,推动国家海洋事业进步,为人类的科技文明发展作出贡献。

信息来源:浙江大学海洋学院 作者:陈鹰 % b9 W' d+ U% v. O8 R4 d$ T4 x

6 g/ ^9 c. b( f9 T/ Z8 n, S

2 g+ v) Q4 e% c8 q# M' _, f. Y Y/ I" }6 q) t! [+ S, B ) q4 N% U7 c# T+ e# x+ ]$ i6 _: q' d2 A 7 ~) g2 h& q; u7 L
回复

举报 使用道具

相关帖子

全部回帖
暂无回帖,快来参与回复吧
懒得打字?点击右侧快捷回复 【吾爱海洋论坛发文有奖】
您需要登录后才可以回帖 登录 | 立即注册
双绞线
活跃在昨天 21:43
快速回复 返回顶部 返回列表